
DIGITAL NOTES

ON

EMBEDDED SYSTEMS & DESIGN

(R20A0903)
For

CSE(IOT)

Prepared by

 Mr.M.Krishna Chaithanya
Assistant Professor, Dept. of ECE

B.TECH III YEAR – I SEM (R20)

(2022-2023)

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING
MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY

(Autonomous Institution – UGC, Govt. of India)

(Affiliated to JNTUH, Hyderabad, Approved by AICTE - Accredited by NBA & NAAC – ‘A’ Grade - ISO 9001:2015 Certified)

Maisammaguda, Dhulapally (Post Via. Hakimpet), Secunderabad – 500100, Telangana State, India

MALLAREDDYCOLLEGEOFENGINEERING&TECHNOLOGY

B. TECH - III- YEAR I-SEM-IOTLT/P/DC3-/-/-3

EMBEDDEDSYSTEMS AND DESIGN (R20A0903)

COURSEOBJECTIVES:

Fo rembeddedsystems ,the course will enablethestudentsto:

1. To understand micro controllers architecture and it functionalities

2. Understand the core of an embedded system

3. To learn the embedded firmware design and development

4. To understands the embedded programming concepts

UNIT-I:

INTRODUCTION TO MICROCONTROLLERS:

8051 Microcontroller:

Overview of 8051 Microcontroller, 8051 Architecture, Pin diagram, Memory Organization,

Addressing Modes, and Instruction setof8051.

Arduino: Overview of Arduino, Introduction to ATMEGEA 328P, Arduino board. Introduction

Arduino Programming: Setup (), loop (), Digital Read (), Digital Write ()

AnalogRead(), AnalogWrite().

UNIT-II: INTRODUCTION TO EMBEDDED SYSTEMS:

Definition of embedded systems, Embedded systems Vs General computing systems, History of

embedded systems, Classification, Major application Areas, Purpose of embedded systems,

characteristic sand quality attributes of embedded systems.

UNIT-III: TYPICAL EMBEDDED SYSTEM: Core of the embedded system, Sensors and

actuators, Onboard communication interfaces-I2C,SPI,parallel interface;External communication

interfaces-RS232,USB,infrared,Bluetooth,Wi-Fi,ZigBee,GPRS.

UNIT-IV: EMBEDDED FIRMWAREDESIGN AND DEVELOPMENT:

Embedded firmware design approaches -superloop-basedapproach,operating system-based

approach; embedded firmware development languages -assembly language-based development,

high level language-based development.

UNIT-V EMBEDDED PROGRAMMING:

Assembly language: Interfacing LED, LCD and keypad to 8051 Microcontroller.

Embedded C: Interfacing LED, RGB LED, LCD, Switch, Sensors, Buzzer to Arduino UNO,

Serial communication programming with Arduino.

TEXTBOOKS:

1. Introduction to Embedded Systems-shibukv, McGraw Hill Education.

2. Kenneth. J.Ayala, The 8051 Microcontroller, 3rd Edition Cengage Learning

REFERENCEBOOKS:

1. The 8051 Microcontroller and Embedded Systems Second Edition Muhammad Ali
Mazidi Janice GillispieMazidiRolin D. McKinlay

2. Embedded Systems- An integrated approach - Lyla B Das, Pearsoneducation2012.

COURSEOUTCOMES:

After going through this course, the student will be able to

1. The student will learn the internal organization of popular 8051 microcontrollers.

2. Understand the core of the embedded systems

3. Understand the internal and external communication interface

4. Understand Embedded Firmware design approaches

5. Understand embedded programming concepts

Unit-1

CONTENTS

INTRODUCTION TO MICROCONTROLLERS:
8051 Microcontroller:

 Overview of 8051 Microcontroller

 8051 Architecture

 Pin diagram

 Memory Organization

 Addressing Modes

 Instruction setof8051.

Arduino:
 Overview of Arduino.

 Introduction to ATMEGEA 328P.

 Arduinoboard:Introduction

 Arduino Programming:

Setup (), loop (), Digital Read (), Digital Write () AnalogRead (), Analog Write ().

Introduction

THE 8086 MICROPROCESSOR:

A microprocessor is an electronic component that is used by a computer to do its work. It is a central

processing unit on a single integrated circuit chip containing millions of very small components

including transistors, resistors, and diodes that work together. An Integrated circuit that contains all

the functions of a central processing unit (CPU) of a computer is called Microprocessor.

FEATURES OF 8086 Microprocessor:

 The 8086 microprocessor is a 16-bit microprocessor. What this means is that the ALU and

the internal registers work with 16 bit of binary data at a time.

 It has 16 bits of the data bus. Because of this, the 8086 can read or write either 16 bit or 8 bit

of data at a time.

 The 8086 microprocessor has 20 bits of address lines that can access 220 address locations.

 Each memory location is a byte-addressable memory location.
Therefore, the total amount of memory that the 8086 microprocessor contains = 220 bytes = 1
MB

Therefore, the 8086 can access up to 1 MB of memory.

 It works in the frequency range of about 5-10 MHz

 It can prefetch up to 6 instruction bytes from memory and queues them in order to speed up

instruction execution.

 It requires +5V power supply.

 A 40 pin dual in line package.

 It has 256 vectored interrupts

 It consists of 29,000 transistors.

 8086 is designed to operate in two modes, Minimum mode and Maximum mode.

 The minimum mode is selected by applying logic 1 to the MN /MX input pin.

 This is a single microprocessor configuration.

 The maximum mode is selected by applying logic 0 to the MN / MX input pin.

 This is a multi micro processors configuration.

Components of 8086 microprocessor

The 8086 microprocessor consists of two main blocks:

 Bus Interface Unit (BIU)

 Execution Unit (EU)

The Bus Interface Unit (BIU) consists of the following components:

• Instruction Queue

• Segment Registers

• Instruction Pointer (IP)

The Execution Unit (EU) consists the following:

• Arithmetic Logic Unit (ALU)

• Control Unit

• General Purpose registers

• Index registers and pointers (except IP)

• Flags and Operands

8051 Microcontroller: Introduction

 A microcontroller is a programmable integrated circuit (IC) that consists of a small CPU, RAM

and I/O pins. Microcontroller units (MCUs) are widely used in many devices.

 A microcontroller is a highly integrated single chip, which consists of on chip CPU (Central

Processing Unit), RAM (Random Access Memory), EPROM/PROM/ROM (Erasable

Programmable Read Only Memory), I/O (input/output) Ports – serial and parallel, timers,

interrupt controller etc..

 The 8051 microcontroller is a very popular 8-bit microcontroller introduced by Intel in the
year 1981

 8051 is one of the first most popular microcontroller also known as MCS-51

 8051 works at +5 Volts DC.

 It is available as a 40-pin DIP chip

 It is an 8-bit microcontroller which means data bus is of 8-bits. Therefore, it can process 8-

bits at a time. It is used in wide variety of embedded systems like robotics, remote controls,

automotive industry, telecom applications, power tools etc.

 Initially it came out as N-type metal-oxide-semiconductor (NMOS) based microcontroller, but

later versions were based on complementary metal-oxide-semiconductor(CMOS) technology.

 These microcontrollers were named as 80C51, where C in the name tells that it is based on
CMOS technology.

Development/Classification of microcontrollers

Development of some popular microcontrollers is given as follows.

Difference betweenMicroprocessorandMicrocontroller:

S.No Microprocessor Microcontroller

1 Microprocessor is the

heart of Computer

system.

Micro Controller is the heart

 of an embedded

system.

2 It is only a processor, so memory and

I/O components need to be connected

externally

Micro Controller has a processor along

with internal memory and I/O

components.

3 Memory and I/O has to be connected

externally, so the ciruit becomes

large.

Memory and I/O are already present,

and the internal circuit is small

4 You can’t use it in compact systems You can use it in compact systems

5 It is mainly used in personal

computers

It is used mainly in a washing machine,

MP3 players, and embedded

systems

6 Cost of the entire system is high Cost of the entire system is low

7 Due to external components, the total

power consumption is high.

Therefore, it is not ideal for the

devices running on stored power like

batteries.

As external components are low, total

power consumption is less. So it can be

used with devices running on stored

power like batteries.

8 Most of the microprocessors do not

have power saving features.

Most of the microcontrollers offer

power-saving mode.

9 Microprocessor has a smaller number

of registers, so more operations are

memory- based

Microcontroller has more register.

Hence the programs are easier to write

10 It’s complex and expensive, with a

large number of instructions to

process.

It’s simple and inexpensive with less

number of instructions

to process.

Features of 8051Microcontroller:
 Eight-bit CPU with registers A (the accumulator) and B

 8-bit data bus and 16-bit address bus

 Eight-bit program status word (PSW)

 Eight-bit stack pointer (SP)

 Four register banks, each containing eight registers

 4 KB on chip program memory (ROM or EPROM)).

 128 bytes on chip data memory(RAM).

 Two -16 bit timers T0 and T1

 Five Interrupts (3 internal and 2 external).

 Four Parallel ports each of 8-bits (PORT0, PORT1,PORT2,PORT3) with a total of 32 I/O

lines.

 One 16-bit program counter and One 16-bit DPTR (data pointer).

Overview of the 8051 Family
8051 microcontroller was initially designed by Intel Corporation in 1981. Features of 8051 made it

extremely popular in market. Because of it’s popularity and high demand Intel allowed other

manufacturers to fabricate and market different variants of 8051 with a condition that all these variants

should be code compatible with 8051.

This resulted in a lot of variants of 8051 in market, among which 8052 and 8031 are the most popular
ones. Therefore, 8052 and 8031 are considered as the family members of 8051.

8052
8052 is the super set of 8051 as it has all the features of 8051 with

an extra timer and an extra RAM of 128 bytes. Therefore, 8052 has a total of 256 bytes of RAM and

3 timers in all. Also all the programs written for 8051 will run on 8052 as 8052 is super set of 8051,

but it’s reverse is not true.

Characteristic 8051 8052 8031

RAM 128

bytes

256 bytes 128 bytes

ROM (on-

chip)

4 KB 4 KB 0 KB

Number of

Timer

2 3 2

Interrupt

Sources

6 8 6

Serial Port 1 1 1

Number of

I/O Ports

32 32 32

8031

8031 is referred to as ROM-less microcontroller chip because it has 0 K byes of on-chip ROM. For

it’s operation, 8031 requires external ROM which aids it in fetch and execute operations. Apart from

this, it shares almost all the features of 8051

ARCHITECTURE& BLOCKDIAGRAM OF 8051

MICROCONTROLLER:

Fig.3.BlockDiagramof8051 Microcontroller.

8051 Microcontroller consists of

 an 8-bit ALU&CPU(Central Processing Unit)

 Oscillator

 Interrupt Control

 Bus Control

 one 8-bit PSW(Program Status Word Register),

 A and B registers ,

 one 16-bit Program counter ,

 one 16-bit Data pointer register(DPTR),

 128 bytes of RAM and 4kB of ROM and

 four parallel I/O ports each of 8-bit width.

1. CPU(Central Processing Unit):

The CPU is the brain of any processing machine. It is the part that is responsible for managing all

the tasks of the microcontroller. The CPU is an independent unit.

Users can not interfere with the CPU controlling how it should function. It identifies the tasks

present in the ROM and then processes them.

In the 8051 microcontroller architecture, the CPU is responsible for managing registers. Registers

are a type of memory in a computer. They can store and manipulate data.

2. Oscillator

 Generally, we know that the microcontroller is a device, therefore it requires clock pulses for its

operation of microcontroller applications.

 For this purpose, microcontroller 8051 has an on-chip oscillator which works as a clock source

for Central Processing Unit of the microcontroller. The output pulses of oscillator are stable.

 Therefore, it enables synchronized work of all parts of the 8051 Microcontroller.

3. Interrupts

 In the 8051 microcontroller architecture, interrupts stop the microcontroller’s current task.

Interrupts are caused when some other program has a higher priority request for execution.

 When an interrupt occurs, the ongoing task stops, the sub-routine for the interrupt is executed,

and then the previous job resumes

 8051 has 5 interrupt sources, out of which two are peripheral Interrupts, two are timer interrupts and one

is a serial port interrupt.

4. Memory

The next part of the 8051 microcontroller architecture is the memory. For any data manipulation to

occur, we require a set of instructions.

 A program is a set of commands, which is needed by the Microcontroller to perform a

particular task. These programs need a storage space where they can be stored and later the

microcontroller interpret them and perform the specific task.

 8051 microcontroller architecture include two types of memory, such as : program memory

and data memory.

 The instructions of the CPU are stored in the Program Memory. It is usually implemented as

Read-Only Memory or ROM, where the Program written into it will be retained even when

the power is down or the system is reset.

 Data Memory in a Microcontroller is responsible for storing values of variables, temporary

data, intermediate results, and other data for the proper operation of the program.

 In the 8051 microcontroller architecture, the microcontroller has 4KB ROM and 128 bytes of

RAM.

5. Bus

A bus is a group of wires. Communication within the microcontroller happens through this bus. There

are either 8 or 16 or more wires in the bus. If the 8051 microcontroller architecture has 8 wires, it can

carry 8 bits of data. If the 8051 microcontroller architecture has 16 wires, it can carry 16 bits of data.

The bus further falls into two categories:

Address Bus: The address bus in the 8051 microcontroller architecture is of 16 bits. This bus transfers

data from the CPU to the memory. There are different addressing modes in this bus:

 Immediate addressing modes.

 Register addressing mode.

 Direct Addressing mode.

 Register indirect addressing mode.

Data Bus: In 8051 microcontroller architecture, the data bus is 8 bits. It helps in carrying the

data from one place to another.

6. Input/output Ports

 A microcontroller controls small operations for a system. It is embedded in the systems. We

might sometimes need to connect the microcontroller to other devices. In the 8051

microcontroller architecture, we have 4 input/output ports. We connect other input/output

peripherals using these ports.

 All the 4 ports function bidirectionally i.e., either input or output according to the software

control.

7. Timers/Counters

In the 8051 microcontroller architecture, we have two timers. They are each 16 bits. We have

the timers to generate gaps between two events. The two timers generate two delays(gaps),

and the suitable one is chosen.

 The timer produces the delay according to the demand of the processor and sends the signal to

the processor once the respective delay gets produced.

 Microcontroller 8051 is incorporated with two 16 bit counters & timers. The counters are

separated into 8-bit registers. The timers are utilized for measuring the intervals, to find out

pulse width, etc.

The microcontroller also includes a program counter, data pointer, stack & stack pointer, instruction

registers including latches, temporary registers & buffers for the I/O ports.

8. A and B Registers: The A and B registers are special function registers which hold the results of

many arithmetic and logical operations of 8051

A register is also called the Accumulator and as its name suggests, is used as a general register to

accumulate the results of a large number of instructions

9. The R registers: The "R" registers are a set of eight registers that are named R0, R1, etc. up to

and including R7.

These registers are used as auxiliary registers in many operations.

The "R" registers are also used to temporarily store values.

10. STACK in 8051 Microcontroller

 The stack is a part of RAM used by the CPU to store information temporarily. This information

may be either data or an address

 In 8051 the RAM locations 08 to 1F (24 bytes) can be used for the Stack

 The register used to access the stack is called the Stack pointer which is an 8-bit register.

 There are two important instructions to handle this stack. One is the PUSH and the other is the

POP.

 The loading of data from CPU registers to the stack is done by PUSH and the loading of the

contents of the stack back into a CPU register is done by POP.

11. Stack Pointer (SP)

Stack Pointer (SP) – it contains the address of the data item on the top of the stack. Stack may reside

anywhere on the internal RAM. On reset, SP is initialized to 07 so that the default stack will start from

address 08 onwards.

12. Data Pointer Register (DPTR) :

 It is a 16-bit register which is the only user-accessible.

 DPTR, as the name suggests, is used to point to data.

 It is used by a number of commands which allow the 8051 to access external memory.

 When the 8051 accesses external memory it will access external memory at the address

indicated by DPTR.

 This DPTR can also be used as two 8-registers DPH and DPL

 Data Pointer (DPTR) – DPH (Data pointer higher byte), DPL (Data pointer lower byte).

13. PSW (Program Status Word)

 The program status word (PSW) register is an 8-bit register. It is also referred to as the flag register.

Although the PSW register is 8 bits wide, only 6 bits of it are used by the 8051.The two unused

bits are user-definable flags.

 Four of the flags are called conditional flags, meaning that they indicate some conditions that

result after an instruction is executed. These four are CY (carry), AC (auxiliary carry), P (parity),

and OV (overflow).

 As seen from below figure, the bits PSW.3 and PSW.4 are designated as RS0 and RS1 as register

selection bit, respectively, and are used to change the bank registers.

The PSW.5 and PSW.l bits are general-purpose status flag bits and can be used by the programmer

for any purpose. In other words, they are user definable. See below Figure for the bits of the PSW

register

CY, the carry flag

 This flag is set whenever there is a carry out from the D7 bit.

 This flag bit is affected after an 8-bit addition or subtraction.

 It can also be set to 1 or 0 directly by an instruction such as “SETB C” and “CLR C” where

“SETB C” stands for “set bit carry” and “CLR C” for “clear carry”.

AC, the auxiliary carry flag

 This flag is used by instructions that perform BCD (binary coded decimal) arithmetic.

P, the parity flag

The parity flag reflects the number of 1 s in the A (accumulator) register only.

 If the A register contains an odd number of Is, then P = 1. Therefore, P = 0 if A has an even

number of 1s.

OV, the overflow flag

 This flag is set whenever the result of a signed number operation is too large, causing the high-

order bit to overflow into the sign bit.

 In general, the carry flag is used to detect errors in unsigned arithmetic operations.

 The overflow flag is only used to detect errors in signed arithmetic operations.

Pin Description of 8051 Microcontroller

Pins from 1-8

Port 1: The pins in this port are bi-directional and can be used for input and output. The pins are

individually controlled; some are used for input while others are used for output purposes.

Pin 9

This pin is also called ‘Reset Pin’. This is used for resetting the microcontroller to its initial values.

If the pin is set at logic 0, the chip runs normally. When the oscillator is running, setting the pin at

logic 1 for more than two machine cycles will reset the microcontroller.

Pins from 10-17

PORT 3: These pins are same as pins in port 1 because of their bidirectional input port.

 Pin 10 and Pin 11 perform receiving and transmitting operation of serial data using ‘RS-

232’ protocol.

 Pin 12 and Pin 13 are used to interrupt inputs.

 Pin 14 and Pin 15 perform alternative functions linked with Timer 0 and Timer 1.

 Pin 16 and Pin 17 are used when working with external memory.

Pins from 18-19

The pins are used for connecting an external crystal oscillator module with the microcontroller.

Pin 20

Also called Vss. This is the ground pin that represents 0V.

Pins from 21-28

PORT 2: These are another set of bidirectional input port, they are used when processing external

memory. Higher order address bus signals are multiplexed with this quasi-bidirectional port.

Pin 29

Also called PSEN (Program Store Enable) it controls and manages the access to external CODE

memory.

Pin 30

Named as Address Latch Enable (ALE). It is used when working with external memory. ALE

activity is disabled in some devices where external memory is not used. Thus helping in reducing

the electromagnetic interference generated by the product.

Pin 31

Named as External Access (EA). In order to execute code from internal memory this pin is

connected to Vcc. To execute code from external memory the pin must be grounded.

Pins from 32-39

Port 0: These are set of another bidirectional input port. Unlike Port 1, Port2 and Port 3 this port

lacks pull-up resistors.

Pin 40

Named as Vcc. This is usually a 5V pin on 5V devices and 3V pin on 3V devices.

I/O Pins

The 8051 microcontrollers are mostly 8-bit ports, thus giving a total of 32 pins which you can use

to read input and control output. All of them are bidirectional in nature so they can perform as both

input and output. Some of the ports perform alternate functions as discussed above such as to

support access to external memory. This is done to reduce the size of the microcontroller device.

When these ports are busy in performing their alternate functions, they can not be made to act as

input-output ports.

Memory organization :

The 8051 microcontroller has 128 bytes of Internal RAMand 4kB of on chip ROM .The RAM is

also known as Data memory and the ROM isknownasprogrammemory.

Program memory organization in 8051:

The Program Memory or ROM is a type of non-volatile memory used in microcontrollers where

the code or the program to be executed is stored using the program counter (PC), like tables or

initialization program.

Intel 8051 has an internal/ built-in ROM of 4KB and can be extended up to 64KB by using an

external program memory. The program memory allocation can be done in two ways depending

on the status of the EA pin (External Access Pin), which is an active low pin (i.e., activates when

low-signal is provided).

Program memory:

Program memory accessed through EA pin. In program memory two categories

takes place:

a) If EA is high, internal program memory is accessed to 0FFFH memory location and external

program memory accessed from 1000H to FFFFH memory locations.

b) If EA is low, only external program memory accessed from 0000H to FFFFH memory locations.

Data memory organization in 8051:

The Data Memory or RAM is a volatile memory since cutting off power to the IC will result in loss

of information or data. RAM is used for temporarily storing the data and the auxiliary results

generated during the runtime.

Older version of 8051 used to consist built-in 256 bytes of RAM now, and it consists of an

additional 128 bytes, which are accessed by indirect addressing.

The data memory in 8051 is divided into three parts:

1. Lower 128 bytes (00H – 7FH), which are addressed b either Direct or Indirect addressing.

Further, the Lower 128 bytes are divided into three parts,

 Register Banks (Bank 0,1,2,3) from 00H to 1FH – 32 bytes

 Bit Addressable Area from 20H to 2FH – 16 bytes

 General Purpose Register (Scratch Pad Area) from 30H to 7FH – 80 bytes

2. Upper 128 bytes (80H – 0FFH) for the Special Function Register (SFRs) which includes I/O

ports (P0, P1, P2, P3), Accumulator (A), Timers(THx, TLx, TMOD, TCON, PCON), Interrupts(IE,

IP), Serial Communication controls(SBUF, SCON), Program Status Word (PSW). These are

addressed using Direct addressing.

3. 128 bytes of Additional Memory

Register Banks:

The 8051 has four Register Banks with each bank having 8 “R” registers, which are used in many

of its instructions. These R registers are numbered from 0 through 7 (R0, R1, R2, R3, R4, R5, R6,

and R7). These registers are generally used to assist in manipulating values and moving data from

one memory location to another. For example, to add three numbers say, 0AH, 0BH, 0CH, we

would execute the following instruction:

These banks are accessed one at a time by bit addressing of D3 and D4 bits of PSW (Program Status

Word) SFR by changing the values of RS0 and RS1 by SETB, and CLR commands. For example,

“SETB PSW.3” will set PSW.3 = 1, and Bank 1 register is selected. By default, Bank 0 is selected.

 16 bytes of bit addressable areaand

 80 bytes of general purpose area (Scratch pad memory) as shown in the diagram below.

This area is also utilized by the microcontroller as a storage area for the operating stack.

 The registers are named as R0-R7 .Each register can be addressed by its name or by its

RAM address.

ForEx :MOV A, R7orMOV R7,#05H

Bit addressable memory area

16 bytes of RAM is allotted as a bit addressable memory. It consists of 16 x 8 = 128 bits. These

128 bits can be individually bit-addressed, starting from 00H to 7FH or can be byte-addressable for

20H to 2FH.

Bit addressing is very useful when we want to monitor the status of a particular pin of any port.

General-purpose area/Scratchpad area

The rest of the RAM from 30H to 7FH, these 32 bytes can be addressed directly or indirectly using

direct or indirect addressing modes, respectively. Therefore it’s also called Scratch Pad Memory.

You may read or write a full byte (8-bit) data at these locations.

8051 Microcontroller: Addressing Modes

Addressing:-The CPU can access data in a register or in memory or be provided as an immediate

value. These various ways of accessing data are called addressing modes.

The 8051 provides a total of five distinct addressing modes.

They are as follows:-

1) Immediate addressing modes.

2) Register addressing modes.

3) Direct addressing modes.

4) Register indirect - addressing mode.

5) Indexed addressing mode.

1) Immediate Addressing mode:-

In Immediate Addressing mode, the operand, which follows the Opcode, is a constant data of either

8 or 16 bits. The name Immediate Addressing came from the fact that the constant data to be stored

in the memory immediately follows the Opcode.

https://technobyte.org/addressing-modes-8051-microcontroller/

The constant value to be stored is specified in the instruction itself rather than taking from a register.

The destination register to which the constant data must be copied should be the same size as the
operand mentioned in the instruction.

Example:-

MOV A, # 82H ; load 82H into A

MOV R4, # 100 ; load the decimal value 100 in to R4

MOV B, # 40H ; load 40H in to B

MOV P1, # 55H ; load 55H directly to port 1

MOV DPTR , # 4521 H ; DPTR =4521 H

2) Register - Addressing Mode:-

In the 8051 Microcontroller Memory Organization Tutorial, we have seen the organization of RAM

and four banks of Working Registers with eight Registers in each bank.

In Register Addressing mode, one of the eight registers (R0 – R7) is specified as Operand in the

Instruction.

It is important to select the appropriate Bank with the help of PSW Register.

Example:-

MOV A,RO ;copy the contents of R0 in to A

MOV R2,A ;copy the contents of A in to R2

ADD A,R5 ;Add contents of R5 to A

MOV R7,DPL ;load R7 with contents of DPL

3) Direct Addressing mode:-

In direct addressing mode the data is in a RAM Memory location whose addressing is known

and this address is given as a part of the instruction.

Although the entire 128 bytes of RAM can be addressed using direct addressing mode It is most

often used to access RAM locations 30-7FH

Example:-

MOV R0, 40H ; save content of RAM location 40H in Ro

MOV 7FH, A ; save content of A in to RAM location 7FH

MOV A,07H ;same as move A1 R7 is copies data in R7 to A

MOV 03H, 04H ; it copies data in R4 to R3

4) Indirect addressing mode:-

In the Indirect Addressing Mode or Register Indirect Addressing Mode, the address of the Operand

is specified as the content of a Register. This will be clearer with an example.

Example: MOV A, @R1

The @ symbol indicates that the addressing mode is indirect. If the contents of R1 is 56H, for

example, then the operand is in the internal RAM location 56H. If the contents of the RAM location

56H is 24H, then 24H is moved into accumulator.

Only R0 and R1 are allowed in Indirect Addressing Mode. These register in the indirect addressing

mode are called as Pointer registers.

5) Indexed addressing mode:-

With Indexed Addressing Mode, the effective address of the Operand is the sum of a

base register and an offset register. The Base Register can be either Data Pointer (DPTR) or

Program Counter (PC) while the Offset register is the Accumulator (A).

In Indexed Addressing Mode, only MOVC and JMP instructions can be used. Indexed

Addressing Mode is useful when retrieving data from look-up tables.

Example: MOVC A, @A+DPTR

Here, the address for the operand is the sum of contents of DPTR and Accumulator.

8051 Instruction Set:

Before seeing the types of instructions, let us see the structure of the 8051 Microcontroller

Instruction. An 8051 Instruction consists of an Opcode (short of Operation – Code) followed by

Operand(s) of size Zero Byte, One Byte or Two Bytes.

The Op-Code part of the instruction contains the Mnemonic, which specifies the type of

operation to be performed. All Mnemonics or the Opcode part of the instruction are of One Byte

size.

• No Operand

• Data value

• I/O Port

• Memory Location

• CPU register

There can multiple operands and the format of instruction is as follows:

MNEMONIC DESTINATION OPERAND, SOURCE OPERAND

A simple instruction consists of just the opcode. Other instructions may include one or more operands.

Instruction can be one-byte instruction, which contains only opcode, or two-byte instructions, where

the second byte is the operand or three byte instructions, where the operand makes up the second and

third byte.

Based on the operation they perform, all the instructions in the 8051 Microcontroller Instruction Set

are divided into five groups. They are:

 Data Transfer Instructions

 Arithmetic Instructions

 Logical Instructions

 Boolean or Bit Manipulation Instructions

 Program Branching Instructions

We will now see about these instructions briefly.

1. Arithmetic Instructions:

Using Arithmetic Instructions, you can perform addition, subtraction, multiplication and division.

The arithmetic instructions also include increment by one, decrement by one and a special

instruction called Decimal Adjust Accumulator.

Fo rexample:

ADDA, R1-Theresult of addition(A+R1) will be stored in the accumulator.

 ADD-Addition Operation

 ADDC-Addition with Carry

 SUB-Subtract operation

 SUBB-Subtract with Barrow

 MUL-Multiplication Operation

 DIV-Divison Operation

 INC -Incrementing by one

 DEC-Decreamenting by one

2. Logical Instructions: The Logical Instructions are used toperform logical operationslikeAND,

OR, XOR, NOT, Rotate, Clear and Swap. Logical Instruction are performed on Bytes of data

ona bit-by-bit basis. Logic instructions perform logic operations upon corresponding bits of

two registers. After execution, the result is stored in the first operand.

 ANL-Logical AND Operation

 ORL-Logical OR operation

 XRL-Logical Exclusive Operation

 CPL-Complement Operation

 RL-Rotate Left Operation

 RLC-Rotate Left Through Carry

 RC-Rotate Right Operation

 RRC-Rotate Right Through Carry

3. Data Transfer Instructions: Data transfer instructions move the content of one register

toanother. The register the content of which is moved remains unchanged. If they have the suffix

“X”(MOVX),thedatais exchangedwithexternal memory.

4. Boolean Variable Instructions: Boolean or Bit Manipulation Instructions will deal with bit

variables. Similar to logic instructions, bit oriented instructions perform logic operations. The

difference is that these are performed upon single bits.

5. Program Branching Instructions:

The last group of instructions in the 8051 Microcontroller Instruction Set is the Program Branching

Instructions. These instructions control the flow of program logic. The mnemonics of the Program

Branching Instructions are as follows.

Consider the below table lists the conditional jumps instruction used in 8051

Instructions Action

JC Jump if CY = 1

JNC Jump if CY ≠ 1

JNB Jump if bit = 0

JB Jump if bit = 1

JZ Jump if A = 0

DJNZ Decrement and Jump if register ≠ 0

JNZ Jump if A ≠ 0

CJNE A, data Jump if A ≠ data

CJNE reg, #data Jump if byte ≠ data

JBC Jump if bit = 1 and clear bit

Overview of Arduino:

Arduino

Arduino is a prototype platform (open-source) based on an easy-to-use hardware and software. It

consists of a circuit board, which can be programed (referred to as a microcontroller) and a ready-

made software called Arduino IDE (Integrated Development Environment), which is used to write and

upload the computer code to the physical board.

The key features are

 Arduino boards are able to read analog or digital input signals from different sensors and turn

it into an output such as activating a motor, turning LED on/off, connect to the cloud and many

other actions.

 You can control your board functions by sending a set of instructions to the microcontroller on

the board via Arduino IDE (referred to as uploading software).

 Unlike most previous programmable circuit boards, Arduino does not need an extra piece of

hardware (called a programmer) in order to load a new code onto the board. You can simply use

a USB cable.

 Additionally, the Arduino IDE uses a simplified version of C++, making it easier to learn to

program.

 Finally, Arduino provides a standard form factor that breaks the functions of the micro-

controller into a more accessible package.

Board Types

Various kinds of Arduino boards are available depending on different microcontrollers used. However,

all Arduino boards have one thing in common: they are programed through the Arduino IDE.

The differences are based on the number of inputs and outputs (the number of sensors, LEDs, and

buttons you can use on a single board), speed, operating voltage, form factor etc. Some boards are

designed to be embedded and have no programming interface (hardware), which you would need to

buy separately. Some can run directly from a 3.7V battery, others need at least 5V.

Arduino UNO

Arduino UNO is a basic and inexpensive Arduino board and is the most popular of all the Arduino

boards with a market share of over 50%. Arduino UNO is considered to be the best prototyping board

for beginners in electronics and coding.

Arduino UNO comes with different features and capabilities. As mentioned earlier, the microcontroller

used in UNO is ATmega328P, which is an 8-bit microcontroller based on the AVR architecture.

UNO has 14 digital input – output (I/O) pins which can be used as either input or output by connecting

them with different external devices and components. Out of these 14 pins, 6 pins are capable of

producing PWM signal. All the digital pins operate at 5V and can output a current of 20mA.

60

Arduino hardware is a PCB-mounted microcontroller that you can program and use for simple daily

tasks, mathematical computations, and prototyping and testing. An Arduino development board

consists of the core microcontroller with its supplementary components and the necessary circuitry to

communicate with the PC which we will be using for both communications as well as programming the

microcontroller.

For communication or programming purposes, we will be using a USB to TTL converter, which will

be embedded within the Arduino board.

Arduino block diagram shows the important modules on an Arduino UNO board.

In the UNO board, the main component is the ATMega328P. It is the heart of the Arduino UNO.

Arduino block diagram

61

Arduino UNO-Pin diagram

Arduino UNO BoardDescription:

Power USB

Arduino board can be powered by using the USB cable from your computer. All you need to do is

connect the USB cable to the USB connection (1).

Power (Barrel Jack)

Arduino boards can be powered directly from the AC mains power supply by connecting it to the

Barrel Jack (2).

Voltage Regulator

The function of the voltage regulator is to control the voltage given to the Arduino board and

stabilize the DC voltages used by the processor and other elements.

Crystal Oscillator

The crystal oscillator helps Arduino in dealing with time issues. How does Arduino calculate time?

The answer is, by using the crystal oscillator. The number printed on top of the Arduino crystal is

16.000H9H. It tells us that the frequency is 16,000,000 Hertz or 16 MHz.

Arduino Reset

You can reset your Arduino board, i.e., start your program from the beginning. You can reset the

UNO board in two ways. First, by using the reset button (17) on the board. Second, you can connect

an external reset button to the Arduino pin labeled RESET (5).

Pins (3.3, 5, GND, Vin)

3.3V (6) − Supply 3.3 output volt

5V (7) − Supply 5 output volt

62

Most of the components used with Arduino board works fine with 3.3 volt and 5 volt.

GND (8)(Ground) − There are several GND pins on the Arduino, any of which can be used to ground

your circuit.

Vin (9) − This pin also can be used to power the Arduino board from an external power source, like AC

mains power supply.

Analog pins

The Arduino UNO board has six analog input pins A0 through A5. These pins can read the signal from

an analog sensor like the humidity sensor or temperature sensor and convert it into a digital value that

can be read by the microprocessor.

Main microcontroller

Each Arduino board has its own microcontroller (11). You can assume it as the brain of your board. The

main IC (integrated circuit) on the Arduino is slightly different from board to board. The

microcontrollers are usually of the ATMEL Company. You must know what IC your board has before

loading up a new program from the Arduino IDE. This information is available on the top of the IC.

ICSP pin

Mostly, ICSP is an AVR, a tiny programming header for the Arduino consisting of MOSI, MISO, SCK,

RESET, VCC, and GND. It is often referred to as an SPI (Serial Peripheral Interface), which could be

considered as an "expansion" of the output. Actually, you are slaving the output device to the master of

the SPI bus.

Power LED indicator

This LED should light up when you plug your Arduino into a power source to indicate that your board

is powered up correctly. If this light does not turn on, then there is something wrong with the connection.

TX and RX LEDs

On your board, you will find two labels: TX (transmit) and RX (receive). They appear in two places

on the Arduino UNO board. First, at the digital pins 0 and 1, to indicate the pins responsible for serial

communication. Second, the TX and RX led (13). The TX led flashes with different speed while sending

the serial data. The speed of flashing depends on the baud rate used by the board. RX flashes during the

receiving process.

Digital I/O

The Arduino UNO board has 14 digital I/O pins (of which 6 provide PWM (Pulse Width Modulation)

output. The pins 0 to 13 are used as a digital input or output for the Arduino board. These pins can be

configured to work as input digital pins to read logic values (0 or 1) or as digital output pins to drive

different modules like LEDs, relays, etc.

External Interrupt Pins: This pin of the Arduino board is used to produce the External interrupt

and it is done by pin numbers 2 and 3.

63

PWM Pins: This pins of the board is used to convert the digital signal into an analog by varying the

width of the Pulse. The pin numbers 3,5,6,9,10 and 11 are used as a PWM pin.

SPI Pins: This is the Serial Peripheral Interface pin, it is used to maintain SPI communication with the

help of the SPI library. SPI pins include:

SS: Pin number 10 is used as a Slave Select

MOSI: Pin number 11 is used as a Master Out Slave In

MISO: Pin number 12 is used as a Master In Slave Out

SCK: Pin number 13 is used as a Serial Clock

AREF Pin: This is an analog reference pin of the Arduino board. It is used to provide a reference voltage

from an external power supply.

Introduction to ATMEGEA 328P:
ATMEGA328P is high performance, low power controller from Microchip. ATMEGA328P is an 8-

bit microcontroller based on AVR RISC architecture. It is the most popular of all AVR controllers as

it is used in ARDUINO boards.

Applications

There are hundreds of applications for ATMEGA328P:

 Used in ARDUINO UNO, ARDUINO NANO and ARDUINO MICRO boards.

 Industrial control systems.

 SMPS and Power Regulation systems.

 Digital data processing.

 Analog signal measuring and manipulations.

 Embedded systems like coffee machine, vending machine.

 Motor control systems.

 Display units.

 Peripheral Interface system.

64

ATMega328 Pinout Configuration

ATMEGA328P is a 28 pin chip as shown in pin diagram above. Many pins of the chip here have more

than one function. We will describe functions of each pin in below table.

Pin

No.

Pin name Description Secondary Function

1 PC6 (RESET) Pin6 of

PORTC

Pin by default is used as RESET pin. PC6 can only

be used as I/O pin when RSTDISBL Fuse is

programmed.

2 PD0 (RXD) Pin0 of

PORTD

RXD (Data Input Pin for USART)

USART Serial Communication Interface

[Can be used for programming]

3 PD1 (TXD) Pin1 of

PORTD

TXD (Data Output Pin for USART)

USART Serial Communication Interface

[Can be used for programming]

INT2(External Interrupt 2 Input)

65

4 PD2 (INT0) Pin2 of

PORTD

External Interrupt source 0

5 PD3 (INT1/OC2B) Pin3 of

PORTD

External Interrupt source1

OC2B(PWM - Timer/Counter2 Output Compare

Match B Output)

6 PD4 (XCK/T0) Pin4 of

PORTD

T0(Timer0 External Counter Input)

XCK (USART External Clock I/O)

7 VCC

Connected to positive voltage

8 GND

Connected to ground

9 PB6

(XTAL1/TOSC1)

Pin6 of

PORTB

XTAL1 (Chip Clock Oscillator pin 1 or External

clock input)

TOSC1 (Timer Oscillator pin 1)

10 PB7

(XTAL2/TOSC2)

Pin7 of

PORTB

XTAL2 (Chip Clock Oscillator pin 2)

TOSC2 (Timer Oscillator pin 2)

11 PD5

(T1/OC0B)

Pin5 of

PORTD

T1(Timer1 External Counter Input)

OC0B(PWM - Timer/Counter0 Output Compare

Match B Output)

12 PD6 (AIN0/OC0A) Pin6 of

PORTD

AIN0(Analog Comparator Positive I/P)

OC0A(PWM - Timer/Counter0 Output Compare

Match A Output)

13 PD7 (AIN1) Pin7 of

PORTD

AIN1(Analog Comparator Negative I/P)

66

14 PB0 (ICP1/CLKO) Pin0 of

PORTB

ICP1(Timer/Counter1 Input Capture Pin)

CLKO (Divided System Clock. The divided

system clock can be output on the PB0 pin)

15 PB1 (OC1A) Pin1 of

PORTB

OC1A (Timer/Counter1 Output Compare Match A

Output)

16 PB2 (SS/OC1B) Pin2 of

PORTB

SS (SPI Slave Select Input). This pin is low when

controller acts as slave.

[Serial Peripheral Interface (SPI) for

programming]

OC1B (Timer/Counter1 Output Compare Match B

Output)

17 PB3 (MOSI/OC2A) Pin3 of

PORTB

MOSI (Master Output Slave Input). When

controller acts as slave, the data is received by this

pin. [Serial Peripheral Interface (SPI) for

programming]

OC2 (Timer/Counter2 Output Compare Match

Output)

18 PB4 (MISO) Pin4 of

PORTB

MISO (Master Input Slave Output). When

controller acts as slave, the data is sent to master

by this controller through this pin.

[Serial Peripheral Interface (SPI) for

programming]

19 PB5 (SCK) Pin5 of

PORTB

SCK (SPI Bus Serial Clock). This is the clock

shared between this controller and other system for

accurate data transfer.

[Serial Peripheral Interface (SPI) for

programming]

20 AVCC

Power for Internal ADC Converter

67

21 AREF

Analog Reference Pin for ADC

22 GND

GROUND

23 PC0 (ADC0) Pin0 of

PORTC

ADC0 (ADC Input Channel 0)

24 PC1 (ADC1) Pin1 of

PORTC

ADC1 (ADC Input Channel 1)

25 PC2 (ADC2) Pin2 of

PORTC

ADC2 (ADC Input Channel 2)

26 PC3 (ADC3) Pin3 of

PORTC

ADC3 (ADC Input Channel 3)

27 PC4 (ADC4/SDA) Pin4 of

PORTC

ADC4 (ADC Input Channel 4)

SDA (Two-wire Serial Bus Data Input/output

Line)

28 PC5 (ADC5/SCL) Pin5 of

PORTC

ADC5 (ADC Input Channel 5)

SCL (Two-wire Serial Bus Clock Line)

Introduction to Arduino Programming:

Arduino IDE

The Arduino IDE is open-source software, which is used to write and upload code to the Arduino boards.

The IDE application is suitable for different operating systems such as Windows, Mac OS X, and

Linux. It supports the programming languages C and C++. Here, IDE stands for Integrated

Development Environment.

The Arduino IDE will appear as:

68

The program or code written in the Arduino IDE is often called as sketching. We need to connect the

Genuino and Arduino board with the IDE to upload the sketch written in the Arduino IDE software. The

sketch is saved with the extension '.ino.

Toolbar Button

The icons displayed on the toolbar are New, Open, Save, Upload, and Verify

It is shown below:

Upload

The Upload button compiles and runs our code written on the screen. It further uploads the code to the

connected board. Before uploading the sketch, we need to make sure that the correct board and ports are

selected.

We also need a USB connection to connect the board and the computer. Once all the above measures

are done, click on the Upload button present on the toolbar.

69

Open

The Open button is used to open the already created file. The selected file will be opened in the current

window.

Save

The save button is used to save the current sketch or code.

New

It is used to create a new sketch or opens a new window.

Verify

The Verify button is used to check the compilation error of the sketch or the written code.

Serial Monitor

The serial monitor button is present on the right corner of the toolbar. It opens the serial monitor.

Arduino Functions

The functions allow a programmer to divide a specific code into various sections, and each section

performs a particular task. The functions are created to perform a task multiple times in a program.

The function is a type of procedure that returns the area of code from which it is called.

For example, to repeat a task multiple times in code, we can use the same set of statements every time

the task is performed.

Advantages of using Functions

Let's discuss some advantages of using functions in programming, which are listed below:

 It increases the readability of the code.

 It conceives and organizes the program.

 It reduces the chances of errors.

 It makes the program compact and small.

 It avoids the repetition of the set of statements or codes.

 It allows us to divide a complex code or program into a simpler one.

 The modification becomes easier with the help of functions in a program.

70

BUILT IN FUNCTIONS
The Arduino programming language comes with a huge array of built in functions that are useful for

all of our projects. These built in functions allow us to save time on the programming side of our builds.

We don't have to spend time developing our own functions, we can just use the ones that are provided.

The Arduino has two common functions setup() and loop(), which are called automatically in the

background. The code to be executed is written inside the curly braces within these functions.The

Arduino void setup and void loop functions are mandatory.

Void setup ()

void setup() - It includes the initial part of the code, which is executed only once. It is called as

the preparation block.

As the void setup function is called only once at the very beginning of the program, this will be the

place to:

 Initialize variables’ values.

 Setup communications (ex: Serial).

 Setup modes for digital pins (input/output).

 Initialize any hardware component (sensor/actuator) plugged to the Arduino.

 Etc.

The void setup, as its name suggest, is made for you to do any setup required at the beginning of the

program. Don’t write the core functionalities here, just the initialization code.

Depending on the complexity of your program, you may have a lot of instructions to write in that void

function. You can create new functions that you call from the void setup, no problem with that.

Void loop ():

void loop() - It includes the statements, which are executed repeatedly. It is called the execution

block.

Now, in the void loop you’ll write your main program, knowing that the initialization is already done.

In this function, always keep in mind that the last line is followed by the first line!

Also, any variable you’ve declared inside the void loop will be lost when the program exits and enters

the function again. So, if you want to be able to keep data between 2 void loop, make sure to declare

variables in a more global scope.

As for void setup, there’s no need to write all the code directly in the function. You can create as many

other functions as you want (and classes too), and call those functions in the void loop. Ideally, the void

loop should contain just a few lines calling other functions.

71

https://www.javatpoint.com/arduino
https://roboticsbackend.com/arduino-object-oriented-programming-oop/

DIGITALWRITE ()

The digital Write () function is used to control the voltage that is output from a digital pin on the

Arduino board. This is usually written in the loop() function of a sketch.

Syntax:

digitalWrite(pin, value)

Parameters:

pin: the pin number to be used

value: HIGH or LOW

When reading or writing to a digital pin there are only two possible values a pin can take/be-set-

to: HIGH and LOW. If the pin has been configured as an OUTPUT with pinMode(), its voltage will be

set to 5 volts for HIGH and 0 volts for LOW.

Example:

int ledPin = 13; // LED connected to digital pin 13

void setup()

{

pinMode(ledPin, OUTPUT); // sets the digital pin as output

}

void loop()

{

digitalWrite(ledPin, HIGH); // sets the LED on

delay(1000); // waits for a second

digitalWrite(ledPin, LOW); // sets the LED off

delay(1000); // waits for a second

}

DIGITALREAD ()

The digital Read () function reads the value from a specified digital pin, either HIGH or LOW. It will
read voltage connected to the digital pin as either HIGH or LOW, on or off.

Syntax:

digitalRead(pin)

Parameters:

pin: the number of the digital pin you want to read (int)

Example:

Sets pin 13 to the same value as pin 7, declared as an input.

int ledPin = 13; // LED connected to digital pin 13

int inPin = 7; // pushbutton connected to digital pin 7

int val = 0; // variable to store the read value

void setup()

{

pinMode(ledPin, OUTPUT); // sets the digital pin 13 as output

72

http://kkfscs.weebly.com/arduino-basic-sketch.html

pinMode(inPin, INPUT); // sets the digital pin 7 as input

}

void loop()

{

val = digitalRead(inPin); // read the input pin

digitalWrite(ledPin, val); // sets the LED to the button's value

}

DELAY()

Pauses the program for the amount of time (in miliseconds) specified as parameter. (There are 1000

milliseconds in a second.)

Syntax:

delay(ms)

Parameters:

ms: the number of milliseconds to pause.

ANALOGWRITE ():

Writes an analog value (PWM wave) to a pin. Can be used to light a LED at varying brightness’s or

drive a motor at various speeds. After a call to analogWrite(), the pin will generate a steady square

wave of the specified duty cycle until the next call to analogWrite(). On the Arduino UNO, analog

pins 0 - 5, digital pins 11, 10, 9, 6, 5, 3 and use the analogWrite() function

Syntax:

analogWrite(pin, value)

Parameters:

pin: the pin to write to.

value: the duty cycle: between 0 (always off) and 255 (always on).

Example:

This example sets the output to the LED proportional to the value read from the potentiometer. Tjhis

will allow us to control the brightness of an LED using a potentiometer.

int ledPin = 9; // LED connected to digital pin 9

int analogPin = 3; // potentiometer connected to analog pin 3
int val = 0; // variable to store the read value

void setup()

{

pinMode(ledPin, OUTPUT); // sets the pin as output

}

void loop()

{

val = analogRead(analogPin); // read the input pin

analogWrite(ledPin, val / 4); // analogRead values go from 0 to 1023, analogWrite values from 0 to

255

}

73

http://arduino.cc/en/Tutorial/PWM
http://kkfscs.weebly.com/arduino-components.html
http://kkfscs.weebly.com/arduino-components.html

ANALOGREAD ():

Reads the value from the specified analog pin. It will map input voltages between 0 and 5 volts into

integer values between 0 and 1023.

Syntax:

analogRead(pin)

Parameters:

pin: the number of the analog input pin to read from (0 to 5 on most boards)

Returns:

int (0 to 1023)

Example:

This example reads a value from a potentiometer.

int analogPin = 3; // potentiometer middle pin connected to analog pin 3

// outside leads to ground and +5V
int val = 0; // variable to store the value read

void setup()

{

Serial.begin(9600); // setup serial

}

void loop()

{

val = analogRead(analogPin); // read the input pin

Serial.println(val); // debug value

}

74

Reads the value from a digital pin. Accepts a pin

number

the

as a parameter, and returns

or LOW constant.

Writes a HIGH or value to a digital output

pin.

and

You pass the pin number

or LOW as parameters.

Sets a pin to be an input, or an output. You pass

the

the

pin

or

number and

value as parameters. OUTPUT INPUT

pinMode()

HIGH

LOW
digitalWrite()

HIGH

digitalRead()

This function is repeatedly called while the

Arduino program is running.

loop()

This function is called once, when the program

starts, and when the Arduino is shut down and

restarted.

setup()

Description

Built In function

http://kkfscs.weebly.com/arduino-components.html

analogRead()

Reads the value from an analog pin.

analogWrite()

writes an analog value to a pin

delay()

pauses the program for a number of

milliseconds specified as parameter

Your first Arduino program will surely involve making a led turn on the light, and then

turn off.

75

60

UNIT-II
INTRODUCTION TO EMBEDDED SYSTEMS

EMBEDDED SYSTEM:
An Electronic/Electro mechanical system which is designed to perform a specific function

and is a combination of both hardware and firmware (Software)

EXAMPLES:

Electronic Toys,

Mobile Handsets,

Washing Machines, Air Conditioners,

Automotive Control Units,

Set Top Box, DVD Player etc…

Embedded Systems are:

 Unique in character and behavior

 With specialized hardware and software

History of Embedded Systems:

First Recognized Modern Embedded System: Apollo Guidance Computer (AGC) developed

by Charles Stark Draper at the MIT Instrumentation Laboratory. It has two modules

 1.Command module (CM) 2. Lunar Excursion module (LEM)

 RAM size 256, 1K ,2K words

 ROM size 4K,10K,36K words

 Clock frequency is 1.024MHz

 5000 ,3-input RTL NOR gates are used

 User interface is DSKY (display/Keyboard)

https://en.wikipedia.org/wiki/Charles_Stark_Draper

61

Embedded Systems Vs General Computing Systems:

General Purpose Computing System Embedded System

A system which is a combination ofgeneric A system which is a combination of special

hardware and General Purpose Operating System purpose hardware and embedded OSfor

for executing a variety of applications executing a specific set of applications

Contain a General Purpose Operating System May or may not contain an operating system

(GPOS) for functioning

Applications are alterable (programmable)by The firmware of the embedded systemis

user (It is possible for the end user to re-install the pre-programmed and it is non-alterable by

Operating System, and add or removeuser end-user

applications)

Performance is the key deciding factor onthe Application specific requirements (like

selection of the system. Always „Faster is Better‟ performance, power requirements, memory

 usage etc) are the key deciding factors

Less/not at all tailored towards reduced operating Highly tailored to take advantage of the

power requirements, options for different levels power saving modes supported by hardware

of power management. and Operating System

Response requirements are not time critical For certain category of embedded systems

like mission critical systems, the response

time requirement is highly critical

Need not be deterministic in execution behavior
Execution behavior is deterministic fo

certain type of embedded systems like „Hard

Real Time‟ systems

CLASSIFICATION OF EMBEDDED SYSTEMS:

 Based on Generation

 Based on Complexity & Performance

 Based on deterministic behavior

 Based on Triggering

Embedded Systems - Classification based on Generation:

First Generation: The early embedded systems built around 8-bit microprocessors

like 8085 and Z80 and 4-bit microcontrollers with simple hardware and firmware.

EX. stepper motor control units, Digital Telephone Keypads etc.

62

Second Generation: Embedded Systems built around 16-bit microprocessors and 8

or 16-bit microcontrollers, following the first generation embedded systems

EX. SCADA, Data Acquisition Systems etc

Third Generation: Embedded Systems built around high performance 16/32 bit

Microprocessors/controllers, Application Specific Instruction set processors like

Digital Signal Processors (DSPs), and Application Specific Integrated Circuits

(ASICs).The instruction set is complex and powerful.

Ex: Robotics, industrial process control, networking etc.

Fourth Generation: Embedded Systems built around System on Chips (SoC’s),

Re- configurable processors and multicore processors. It brings high

performance, tight integration and miniaturization into the embedded device

market

Ex: Smart phone devices, MIDs etc.

Embedded Systems - Classification based on Complexity & Performance

Small Scale:

The embedded systems built around low performance and low cost 8 or 16 bit

microprocessors/ microcontrollers. It is suitable for simple applications and

where performance is not time critical. It may or may not contain OS.

 washing machine.

 Oven.

 Automatic Door Lock.

 Motion Controlled Home Security System.

 Keyboard controller.

 CD Drive.

 fax machine.

Medium Scale:

Embedded Systems built around medium performance, low cost 16- or 32-bit

microprocessors / microcontrollers or DSPs. These are slightly complex in hardware and

firmware. It may contain GPOS/RTOS.Various examples of medium scale embedded

63

systems are routers for networking, ATM (is. Automated Teller Machine for bank

transactional machines etc.

Large Scale/Complex:

 Embedded Systems built around high performance 32- or 64-bit RISC

processors/controllers, RSoC or multi-core processors and PLD.

 It requires complex hardware and software.

 This system may contain multiple processors/controllers and co-units/hardware

accelerators for offloading the processing requirements from the main processor.

 It contains RTOS for scheduling, prioritization and management.

Classification Based on deterministic behavior:

These are classified into two types

Event Triggered: Activities within the system (e.g., task run-times) are dynamic and depend

upon occurrence of different events.

Time triggered: Activities within the system follow a statically computed schedule (i.e., they

are allocated time slots during which they can take place) and thus by nature are predictable.

Major Application Areas of Embedded Systems:
Consumer Electronics: Camcorders, Cameras etc.

Household Appliances: Television, DVD players, washing machine, Fridge,

Microwave Oven etc.

Home Automation and Security Systems: Air conditioners, sprinklers, Intruder

detection alarms, Closed Circuit Television Cameras, Fire alarms etc.

Automotive Industry: Anti-lock breaking systems (ABS), Engine Control,

Ignition Systems, Automatic Navigation Systems etc.

Telecom: Cellular Telephones, Telephone switches, Handset Multimedia

pplications etc

Computer Peripherals: Printers, Scanners, Fax machines etc.

Computer Networking Systems: Network Routers, Switches, Hubs, Firewalls

etc.

Health Care: Different Kinds of Scanners, EEG, ECG Machines etc.

Measurement & Instrumentation: Digital multi meters, Digital CROs, Logic

Analyzers PLC systems etc.

64

Banking & Retail: Automatic Teller Machines (ATM) and Currency counters,

Point of Sales (POS)

Card Readers: Barcode, Smart Card Readers, Hand held Devices etc.

Purpose of Embedded Systems:

Each Embedded Systems is designed to serve the purpose of any one or a combination of the

following tasks.

 Data Collection/Storage/Representation

 Data Communication

 Data (Signal) Processing

 Monitoring

 Control

 Application Specific User Interface

Data Collection/Storage/Representation

Performs acquisition of data from the external world. The data may be text, audio, video or

any physical quantities. The collected data can be either analog or digital. Data collection is

usually done for storage, analysis, manipulation and transmission. The collected data may be

stored directly in the system or may be transmitted to some other systems or it may be

processed by the system or it may be deleted instantly.

Example: Digital Camera

65

Data Communication:-

Embedded Data communication systems are deployed in applications ranging from complex

satellite communication systems to simple home networking systems. Embedded Data

communication systems are dedicated for data communication. The data communication can

happen through a wired interface (like Ethernet, RS-232C/USB/IEEE1394 etc) or wireless

interface (like Wi-Fi, GSM,/GPRS, Bluetooth, ZigBee etc)

 Network hubs, Routers, switches, Modems etc are typical examples for dedicated data

transmission embedded systems

Data (Signal) Processing

 Embedded systems with Signal processing functionalities are employed in applications

demanding signal processing like Speech coding, synthesis, audio video codec,

transmission applications etc

 Computationally intensive systems Employs Digital Signal Processors (DSPs)

66

4. Monitoring:-

Embedded systems coming under this category are specifically designed for monitoring

purpose. They are used for determining the state of some variables using input sensors.They

cannot impose control over variables. Measuring instruments like Digital CRO, Digital Multi

meter, Logic Analyzer etc used in Control & Instrumentation applications are also examples of

embedded systems for monitoring purpose. Electro Cardiogram (ECG) machine for monitoring

the heartbeat of a patient is a typical example for this. The sensors used in ECG are the different

Electrodes connected to the patient’s body

5. Control:

Embedded systems with control functionalities are used for imposing control over some

variables according to the changes in input variables. Embedded system with control

functionality contains both sensors and actuators. Sensors are connected to the input port for

capturing the changes in environmental variable or measuring variable.The actuators connected

to the output port are controlled according to the changes in input variable to put an impact on

the controlling variable to bring the controlled variable to the specified range

 Air conditioner for controlling room temperature is a typical example for embedded

system with „Control‟ functionality

67

Air conditioner contains a room temperature sensing element (sensor) which may be a

thermistor and a handheld unit for setting up (feeding) the desired temperature.The air

compressor unit acts as the actuator. The compressor is controlled according to the current

room temperature and the desired temperature set by the end user.

Embedded systems possess certain specific characteristics and these are unique to each

Embedded system.

Characteristics of Embedded systems:

 Application and domain specific

 Reactive and Real Time

 Operates in harsh environments

 Distributed

 Small Size and weight

 Power concerns

1. Application and Domain Specific:-

Each E. S has certain functions to perform and they are developed in such a manner to do the

intended functions only. They cannot be used for any other purpose.

Ex – The embedded control units of the microwave oven cannot be replaced with AC’s

embedded control unit because the embedded control units of microwave oven and AC are

specifically designed to perform certain specific tasks.

2. Reactive and Real Time: -

E.S are in constant interaction with the real world through sensors and user-defined input

devices which are connected to the input port of the system. Any changes in the real world are

captured by the sensors or input devices in real time and the control algorithm running inside

the unit reacts in a designed manner to bring the controlled output variables to the desired level.

E.S produce changes in output in response to the changes in the input, so they are referred as

reactive systems.

Real Time system operation means the timing behavior of the system should be deterministic

i.e the system should respond to requests in a known amount of time.

68

Example – E.S which are mission critical like flight control systems, Antilock Brake Systems

(ABS) etc are Real Time systems.

3. Operates in Harsh Environment :–

The design of E.S should take care of the operating conditions of the area where the system is

going to implement. Ex – If the system needs to be deployed in a high temperature zone, then

all the components used in the system should be of high temperature grade.Also proper shock

absorption techniques should be provided to systems which are going to be commissioned in

places subject to high shock.

4. Distributed: –

It means that embedded systems may be a part of a larger system. Many numbers of such

distributed embedded systems form a single large embedded control unit.

Ex – Automatic vending machine. It contains a card reader, a vending unit etc. Each of them

are independent embedded units but they work together to perform the overall vending

function.

5. Small Size and Weight:-

Product aesthetics (size, weight, shape, style, etc) is an important factor in choosing a product.

It is convenient to handle a compact device than a bulky product.

6. Power Concerns: -

Power management is another important factor that needs to be considered in designing

embedded systems.

E.S should be designed in such a way as to minimize the heat dissipation by the system.

Quality Attributes of Embedded System:

Quality attributes are the non-functional requirements that need to be documented properly in

any system design

Quality attributes can be classified as

1.Operational quality attributes

2.Non-operational quality attributes.

69

1. Operational quality attributes

The operational quality attributes represent the quality attributes related to the embedded

system when it is in the operational mode or online mode

The Operational Quality Attributes are

 Response

 Throughput

 Reliability

 Maintainability

 Security

 Saftey

1. Response:

It is the measure of quickness of the system.It tells how fast the system is tracking the changes

in input variables. Most of the E.S demands fast response which should be almost real time.

Ex – Flight control application

2. Throughput

It deals with the efficiency of a system. It can be defined as the rate of production or operation

of a defined process over a stated period of time.The rates can be expressed in terms of

products, batches produced or any other meaningful measurements.

Ex – In case of card reader throughput means how many transactions the reader can perform

in a minute or in an hour or in a day.

3. Reliability:

It is a measure of how much we can rely upon the proper functioning of the system.

Mean Time between Failure (MTBF) and Mean Time To Repair (MTTR) are the terms used

in determining system reliability.MTBF gives the frequency of failures in hours/weeks/months.

70

MTTR specifies how long the system is allowed to be out of order following a failure.For

embedded system with critical application need, it should be of the order of minutes.

4. Maintainability:

It deals with support and maintenance to the end user or client in case of technical issues and

product failure or on the basis of a routine system checkup.Reliability and maintainability are

complementary to each other.A more reliable system means a system with less corrective

maintainability requirements and vice versa. Maintainability can be broadly classified into two

categories. Scheduled or Periodic maintenance (Preventive maintenance), Corrective

maintenance to unexpected failures

5. Security:

Confidentiality, Integrity and availability are the three major measures of information security.

Confidentiality deals with protection of data and application from unauthorized disclosure.

Integrity deals with the protection of data and application from unauthorized modification.

Availability deals with protection of data and application from unauthorized users.

6. Saftey:

Safety deals with the possible damages that can happen to the operator, public and the

environment due to the breakdown of an Embedded System. The breakdown of an embedded

system may occur due to a hardware failure or a firmware failure. Safety analysis is a must in

product engineering to evaluate the anticipated damages and determine the best course of action

to bring down the consequences of damage to an acceptable level.

71

Non Operational Quality Attributes:

The quality attributes that needs to be addressed for the product not on the basis of operational

aspects are grouped under this category.

The Non Operational Quality Attributes are

 Testability and Debugability

 Evolvability

 Portability

 Time to Prototype and Market

 Per Unit Cost and Revenue

1.Testability and Debugability:

Testability deals with how easily one can test the design, application and by which means

it can be done.For an E.S testability is applicable to both the embedded hardware and

firmware. Embedded hardware testing ensures that the peripherals and total hardware

functions in the desired manner, whereas firmware testing ensures that the firmware is

functioning in the expected way

Debug-ability is a means of debugging the product from unexpected behavior in the system

Debug-ability is two level process

1.Hardware level 2.software level

1. Hardware level: It is used for finding the issues created by hardware problems.

2. Software level: It is employed for finding the errors created by the flaws in the software

2. Evolvability:-

 It is a term which is closely related to Biology.

 It is referred as the non-heritable variation.

 For an embedded system evolvability refers to the ease with which the embedded

product can be modified to take advantage of new firmware or hardware technologies.

72

3. Portability: -

 It is the measure of system independence.

An embedded product is said to be portable if the product is capable of functioning in

various environments, target processors and embedded operating systems

4. Time-to-Prototype and Market:-

 It is the time elapsed between the conceptualization of a product and the time at which

the product is ready for selling.

 The commercial embedded product market is highly competitive and time to market

the product is critical factor in the success of commercial embedded product.

 There may be multiple players in embedded industry who develop products of the same

category (like mobile phone).

5. Per Unit Cost and Revenue:-

 Cost is a factor which is closely monitored by both end user and product manufacturer.

 Cost is highly sensitive factor for commercial products

 Any failure to position the cost of a commercial product at a nominal rate may lead to

the failure of the product in the market.

 Proper market study and cost benefit analysis should be carried out before taking a

decision on the per-unit cost of the embedded product.

 The ultimate aim of the product is to generate marginal profit so the budget and total

cost should be properly balanced to provide a marginal profit.

MRCET ECE ES UNIT-3 Notes

Dept. of ECE 73

UNIT-III

TYPICAL EMBEDDED SYSTEM

ELEMENTS OF EMBEDDED SYSTEMS:

An embedded system is a combination of 3 things, Hardware Software Mechanical

Components and it is supposed to do one specific task only. A typical embedded system contains

a single chip controller which acts as the master brain of the system. Diagrammatically an

embedded system can be represented as follows:

FPGA/ASIC/DSP/SoC

Microprocessor/controller

Embedded

Firmware

Memory

Communication Interface

 System

I/p Ports Core
O/p Ports

(Sensors)

 (Actuators)

Other supporting

Integrated Circuits &

subsystems

Embedded System

Real World

Embedded systems are basically designed to regulate a physical variable (such Microwave

Oven) or to manipulate the state of some devices by sending some signals to the actuators or

devices connected to the output port system (such as temperature in Air Conditioner), in

response to the input signal provided by the end users or sensors which are connected to the

input ports.

MRCET ECE ES UNIT-3 Notes

The control is achieved by processing the information coming from the sensors and user

interfaces and controlling some actuators that regulate the physical variable.

Keyboards, push button, switches, etc. are Examples of common user interface input devices

and LEDs, LCDs, Piezoelectric buzzers, etc examples for common user interface output

devices for a typical embedded system.The requirement of type of user interface changes from

application to application based on domain.

Some embedded systems do not require any manual intervention for their operation. They

automatically sense the input parameters from real world through sensors which are connected

at input port. The sensor information is passed to the processor after signal conditioning and

digitization. The core of the system performs some predefined operations on input data with

the help of embedded firmware in the system and sends some actuating signals to the actuator

connect connected to the output port of the system.

The memory of the system is responsible for holding the code (control algorithm and

other important configuration details). There are two types of memories are used in any

embedded system. Fixed memory (ROM) is used for storing code or program. The user

cannot change the firmware in this type of memory. The most common types of memories

used in embedded systems for control algorithm storage are

OTP,PROM,UVEPROM,EEPROM and FLASH

An embedded system without code (i.e. the control algorithm) implemented memory has

all the peripherals but is not capable of making decisions depending on the situational as well

as real world changes.

Memory for implementing the code may be present on the processor or may be

implemented as a separate chip interfacing the processor

In a controller based embedded system, the controller may contain internal memory for

storing code such controllers are called Micro-controllers with on-chip ROM, eg. Atmel

AT89C51.

MRCET ECE ES UNIT-3 Notes

The Core of the Embedded Systems: The core of the embedded system falls into any one

of the following categories.

General Purpose and Domain Specific Processors

o Microprocessors

o Microcontrollers

o Digital Signal Processors

Programmable Logic Devices (PLDs)

Application Specific Integrated Circuits (ASICs)

Commercial off the shelf Components (COTS)

GENERAL PURPOSE AND DOMAIN SPECIFIC PROCESSOR:

Almost 80% of the embedded systems are processor/ controller based.

The processor may be microprocessor or a microcontroller or digital signal processor,

depending on the domain and application.

Microprocessor:

A silicon chip representing a Central Processing Unit (CPU), which is capable of

performing arithmetic as well as logical operations according to a pre-defined set of

Instructions, which is specific to the manufacturer

In general the CPU contains the Arithmetic and Logic Unit (ALU), Control Unit and

Working registers

Microprocessor is a dependant unit and it requires the combination of other hardware like

Memory, Timer Unit, and Interrupt Controller etc for proper functioning.

Intel claims the credit for developing the first Microprocessor unit Intel 4004, a 4 bit

processor which was released in Nov 1971

· Developers of microprocessors.
Intel – Intel 4004 – November 1971(4-bit)

Intel – Intel 4040.

Intel – Intel 8008 – April 1972.

Intel – Intel 8080 – April 1974(8-bit).

Motorola – Motorola 6800.

Intel – Intel 8085 – 1976.

Zilog - Z80 – July 1976

MRCET ECE ES UNIT-3 Notes

Microcontroller:

A highly integrated silicon chip containing a CPU, scratch pad RAM, Special and General
purpose Register Arrays, On Chip ROM/FLASH memory for program storage, Timer and
Interrupt control units and dedicated I/O ports

Microcontrollers can be considered as a super set of Microprocessors

Microcontroller can be general purpose (like Intel 8051, designed for generic applications
and domains) or application specific (Like Automotive AVR from Atmel Corporation.
Designed specifically for automotive applications)

Since a microcontroller contains all the necessary functional blocks for independent working,
they found greater place in the embedded domain in place of microprocessors

Microcontrollers are cheap, cost effective and are readily available in the market

Texas Instruments TMS 1000 is considered as the world‟s first microcontroller

Microprocessor Vs Microcontroller:

Microprocessor Microcontroller

A silicon chip representing a Central Processing Unit A microcontroller is a highly integrated chip that

(CPU), which is capable of performing arithmetic as contains a CPU, scratch pad RAM, Special and

well as logical operations according to a pre-defined set General purpose Register Arrays, On Chip

of Instructions ROM/FLASH memory for program storage, Timer

 and Interrupt control units and dedicated I/O ports

It is a dependent unit. It requires the combination of It is a self contained unit and it doesn’t require

other chips like Timers, Program and data memory external Interrupt Controller, Timer, UART etc for

chips, Interrupt controllers etc for functioning its functioning

Most of the time general purpose in design and Mostly application oriented or domain specific

operation

Doesn‟t contain a built in I/O port. The I/O Port Most of the processors contain multiple built-in I/O

functionality needs to be implemented with the help of ports which can be operated as a single 8 or 16 or 32

external Programmable Peripheral Interface Chips like bit Port or as individual port pins

8255

Targeted for high end market where performance is Targeted for embedded market where performance is

important not so critical (At present this demarcation is invalid)

Limited power saving options compared to Includes lot of power saving features

microcontrollers

MRCET ECE ES UNIT-3 Notes

General Purpose Processor (GPP) Vs Application Specific Instruction Set Processor (ASIP)

General Purpose Processor or GPP is a processor designed for general computational tasks

GPPs are produced in large volumes and targeting the general market. Due to the high
volume production, the per unit cost for a chip is low compared to ASIC or other specific
ICs

A typical general purpose processor contains an Arithmetic and Logic Unit (ALU) and Control
Unit (CU)

Application Specific Instruction Set processors (ASIPs) are processors with architecture
and instruction set optimized to specific domain/application requirements like Network
processing, Automotive, Telecom, media applications, digital signal processing, control
applications etc.

ASIPs fill the architectural spectrum between General Purpose Processors and Application
Specific Integrated Circuits (ASICs)

The need for an ASIP arises when the traditional general purpose processor are unable to meet the
increasing application needs

Some Microcontrollers (like Automotive AVR, USB AVR from Atmel), System on Chips,
Digital Signal Processors etc are examples of Application Specific Instruction Set
Processors (ASIPs)

ASIPs incorporate a processor and on-chip peripherals, demanded by the application requirement,
program and data memory

Digital Signal Processors (DSPs):

Powerful special purpose 8/16/32 bit microprocessors designed specifically to meet the

computational demands and power constraints of today's embedded audio, video, and

communications applications

Digital Signal Processors are 2 to 3 times faster than the general-purpose microprocessors

in signal processing applications

DSPs implement algorithms in hardware which speeds up the execution whereas general

purpose processors implement the algorithm in firmware and the speed of execution

depends primarily on the clock for the processors

DSP can be viewed as a microchip designed for performing high speed computational

MRCET ECE ES UNIT-3 Notes

operations for „addition‟, „subtraction‟, „multiplication‟ and „division‟

MRCET ECE ES UNIT-3 Notes

A typical Digital Signal Processor incorporates the following key units

Program Memory

Data Memory

Computational Engine

I/O Unit

Audio video signal processing, telecommunication and multimedia applications are

typical examples where DSP is employed

RISC V/s CISC Processors/Controllers:

RISC CISC

Lesser no. of instructions Greater no. of Instructions

Instruction Pipelining and increased execution Generally no instruction pipelining feature

speed

Orthogonal Instruction Set (Allows each instruction Non Orthogonal Instruction Set (All instructions

to operate on any register and use any addressing are not allowed to operate on any register and

mode) use any addressing mode. It is instruction

 specific)

Operations are performed on registers only, the Operations are performed on registers or

only memory operations are load and store memory depending on the instruction

Large number of registers are available Limited no. of general purpose registers

Programmer needs to write more code to execute a . A programmer can achieve the desired

task since the instructions are simpler ones functionality with a single instruction which in
 turn provides the effect of using more simpler

 single instructions in RISC

Single, Fixed length Instructions Variable length Instructions

Less Silicon usage and pin count More silicon usage since more additional

decoder logic is required to implement the

complex instruction decoding.

With Harvard Architecture Can be Harvard or Von-Neumann Architecture

MRCET ECE ES UNIT-3 Notes

Microprocessors/controllers based on the Harvard architecture will have separate data bus

and instruction bus. This allows the data transfer and program fetching to occur

simultaneously on both buses

With Harvard architecture, the data memory can be read and written while the program

memory is being accessed. These separated data memory and code memory buses allow

one instruction to execute while the next instruction is fetched (“Pre-fetching”)

Program

Memory

 CPU Data Memory

Single shared Bus

Harvard V/s Von-Neumann Processor/Controller Architecture:

Harvard V/s Von-Neumann Processor/Controller Architecture

The terms Harvard and Von-Neumann refers to the processor architecture design.

Microprocessors/controllers based on the

common bus for fetching both instructions

stored in a common main memory

Von-Neumann architecture shares a single

and data. Program instructions and data are

I/O

CPU

Memory

Harvard Architecture Von-Neumann Architecture

Separate buses for Instruction and Data fetching Single shared bus for Instruction and Data

fetching

Easier to Pipeline, so high performance can be Low performance Compared to Harvard

achieved Architecture

Comparatively high cost Cheaper

No memory alignment problems Allows self modifying codes
†

Since data memory and program memory are Since data memory and program memory

stored physically in different locations, no are stored physically in same chip, chances

chances for accidental corruption of program for accidental corruption of program

memory memory

MRCET ECE ES UNIT-3 Notes

Application Specific Integrated Circuit (ASIC):

A microchip designed to perform a specific or unique application. It is used as replacement

to conventional general purpose logic chips.

ASIC integrates several functions into a single chip and thereby reduces the system

development cost

Most of the ASICs are proprietary products. As a single chip, ASIC consumes very small

area in the total system and thereby helps in the design of smaller systems with high

capabilities/functionalities.

ASICs can be pre-fabricated for a special application or it can be custom fabricated by

using the components from a re-usable „building block‟ library of components for a

particular customer application

Fabrication of ASICs requires a non-refundable initial investment (Non Recurring

Engineering (NRE) charges) for the process technology and configuration expenses

If the Non-Recurring Engineering Charges (NRE) is born by a third party and the

Application Specific Integrated Circuit (ASIC) is made openly available in the market, the

ASIC is referred as Application Specific Standard Product (ASSP)

The ASSP is marketed to multiple customers just as a general-purpose product , but to a

smaller number of customers since it is for a specific application.

MRCET ECE ES UNIT-3 Notes

Some ASICs are proprietary products , the developers are not interested in revealing the

internal details.

Programmable Logic Devices (PLDs):

Logic devices provide specific functions, including device-to-device interfacing, data
communication, signal processing, data display, timing and control operations, and almost
every other function a system must perform.

Logic devices can be classified into two broad categories - Fixed and Programmable. The
circuits in a fixed logic device are permanent, they perform one function or set of functions
- once manufactured, they cannot be changed

Programmable logic devices (PLDs) offer customers a wide range of logic capacity,
features, speed, and voltage characteristics - and these devices can be re-configured to
perform any number of functions at any time

Designers can use inexpensive software tools to quickly develop, simulate, and test their
logic designs in PLD based design. The design can be quickly programmed into a device,
and immediately tested in a live circuit

PLDs are based on re-writable memory technology and the device is reprogrammed to
change the design

Programmable Logic Devices (PLDs) – CPLDs and FPGA

Field Programmable Gate Arrays (FPGAs) and Complex Programmable Logic Devices

(CPLDs) are the two major types of programmable logic devices

FPGA:

FPGA is an IC designed to be configured by a designer after manufacturing.

FPGAs offer the highest amount of logic density, the most features, and the highest

performance.

Logic gate is Medium to high density ranging from 1K to 500K system gates

MRCET ECE ES UNIT-3 Notes

These advanced FPGA devices also offer features such as built-in hardwired processors

(such as the IBM Power PC), substantial amounts of memory, clock management systems,

and support for many of the latest, very fast device-to-device signaling technologies

Figure: FPGA Architecture

These advanced FPGA devices also offer features such as built-in hardwired processors,

substantial amounts of memory, clock management systems, and support for many of the

latest, very fast device-to-device signaling technologies.

FPGAs are used in a wide variety of applications ranging from data processing and

storage, to instrumentation, telecommunications, and digital signal processing

CPLD:

A complex programmable logic device (CPLD) is a programmable logic device with
complexity between that of PALs and FPGAs, and architectural features of both.

CPLDs, by contrast, offer much smaller amounts of logic - up to about 10,000 gates.

CPLDs offer very predictable timing characteristics and are therefore ideal for critical

control applications.

MRCET ECE ES UNIT-3 Notes

CPLDs such as the Xilinx CoolRunner series also require extremely low amounts of power

and are very inexpensive, making them ideal for cost-sensitive, battery-operated, portable

applications such as mobile phones and digital handheld assistants.

ADVANTAGES OF PLDs:

• PLDs offer customer much more flexibility during design cycle

• PLDSs do not require long lead times for prototype or production-the PLDs are already

on a distributor‟s self and ready for shipment

• PLDs do not require customers to pay for large NRE costs and purchase expensive mask

sets

• PLDs allow customers to order just the number of parts required when they need them.

allowing them to control inventory.

• PLDs are reprogrammable even after a piece of equipment is shipped to a customer.

• The manufacturers able to add new features or upgrade the PLD based products that are

in the field by uploading new programming file

Commercial off the Shelf Component (COTS):

A Commercial off-the-shelf (COTS) product is one which is used „as-is‟

COTS products are designed in such a way to provide easy integration and

interoperability with existing system components

MRCET ECE ES UNIT-3 Notes

Typical examples for the COTS hardware unit are Remote Controlled Toy Car control unit

including the RF Circuitry part, High performance, high frequency microwave electronics

(2 to 200 GHz), High bandwidth analog-to-digital converters, Devices and components for

operation at very high temperatures, Electro-optic IR imaging arrays, UV/IR Detectors etc

A COTS component in turn contains a General Purpose Processor (GPP) or Application

Specific Instruction Set Processor (ASIP) or Application Specific Integrated Chip

(ASIC)/Application Specific Standard Product (ASSP) or Programmable Logic Device

(PLD)

The major advantage of using COTS is that they are readily available in the market,

cheap and a developer can cut down his/her development time to a great extend.

There is no need to design the module yourself and write the firmware .

Everything will be readily supplied by the COTs manufacturer.

MRCET ECE ES UNIT-3 Notes

Sensors & Actuators:
• Embedded system is in constant interaction with the real world

• Controlling/monitoring functions executed by the embedded system is achieved in

accordance with the changes happening to the Real World.

• The changes in the system environment or variables are detected by the sensors

connected to the input port of the embedded system.

• If the embedded system is designed for any controlling purpose, the system will produce

some changes in controlling variable to bring the controlled variable to the desired value.

• It is achieved through an actuator connected to the out port of the embedded system.

Sensor:

A transducer device which converts energy from one form to another for any

measurement or control purpose. Sensors acts as input device

Eg. Hall Effect Sensor which measures the distance between the cushion and magnet in

the Smart Running shoes from adidas

Example: IR, humidity , PIR(passive infra red) , ultrasonic , piezoelectric , smoke

sensors

MRCET ECE ES UNIT-3 Notes

Actuator:

A form of transducer device (mechanical or electrical)

which converts signals to corresponding physical action

(motion). Actuator acts as an output device

Eg. Micro motor actuator which adjusts the position of

the cushioning element in the Smart Running shoes

from adidas

MRCET ECE ESD UNIT-3 NOTES

87

Communication Interface:

• Communication interface is essential for communicating with various subsystems of the

embedded system and with the external world

• The communication interface can be viewed in two different perspectives; namely;

1. Device/board level communication interface (Onboard Communication Interface)

2. Product level communication interface (External Communication Interface)

1. Device/board level communication interface (Onboard Communication Interface):

The communication channel which interconnects the various components within an

embedded product is referred as Device/board level communication interface (Onboard

Communication Interface)

 Examples: Serial interfaces like I2C, SPI, UART, 1-Wire etc and Parallel bus interface

2. Product level communication interface (External Communication Interface):

The „Product level communication interface‟ (External Communication Interface) is

responsible for data transfer between the embedded system and other devices or modules. The

external communication interface can be either wired media or wireless media and it can be a serial

or parallel interface.

 Examples for wireless communication interface: Infrared (IR), Bluetooth (BT), Wireless

LAN (Wi-Fi), Radio Frequency waves (RF), GPRS etc.

 Examples for wired interfaces: RS-232C/RS-422/RS 485, USB, Ethernet (TCP-IP), IEEE

1394 port, Parallel port etc.

MRCET ECE ESD UNIT-3 NOTES

88

1. Device/board level or On board communication interfaces: The

Communication channel which interconnects the various components within an embedded product

is referred as Device/board level communication interface (Onboard Communication Interface)

These are classified into

I2C (Inter Integrated Circuit) Bus

SPI (Serial Peripheral Interface) Bus

UART (Universal Asynchronous Receiver Transmitter)

1-Wires Interface

Parallel Interface

1 I2C (Inter Integrated Circuit) Bus:

Inter Integrated Circuit Bus (I2C - Pronounced „I square C‟) is a synchronous bi-directional half

duplex (one-directional communication at a given point of time) two wire serial interface bus.The

concept of I2C bus was developed by „Philips Semiconductors‟ in the early 1980‟s. The original

intention of I2C was to provide an easy way of connection between a

microprocessor/microcontroller system and the peripheral chips in Television sets.

MRCET ECE ESD UNIT-3 NOTES

89

The I2C bus is comprised of two bus lines, namely; Serial Clock – SCL and Serial Data – SDA.

SCL line is responsible for generating synchronization clock pulses and SDA is responsible

for transmitting the serial data across devices.I2C bus is a shared bus system to which many

number of I2C devices can be connected. Devices connected to the I2C bus can act as either

„Master‟ device or „Slave‟ device.

The „Master‟ device is responsible for controlling the communication by

initiating/terminating data transfer, sending data and generating necessary synchronization clock

pulses.

MRCET ECE ESD UNIT-3 NOTES

90

Slave devices wait for the commands from the master and respond upon receiving the

commands. Master and „Slave‟ devices can act as either transmitter or receiver. Regardless

whether a master is acting as transmitter or receiver, the synchronization clock signal is generated

by the „Master‟ device only.I2C supports multi masters on the same bus.

The sequence of operation for communicating with an I2C slave device is:

1. Master device pulls the clock line (SCL) of the bus to „HIGH‟

2. Master device pulls the data line (SDA) „LOW‟, when the SCL line is at logic

„HIGH‟ (This is the „Start‟ condition for data transfer)

3. Master sends the address (7 bit or 10 bit wide) of the „Slave‟ device to which it wants to

communicate, over the SDA line.

4. Clock pulses are generated at the SCL line for synchronizing the bit reception by the

slave device.

5. The MSB of the data is always transmitted first.

6. The data in the bus is valid during the „HIGH‟ period of the clock signal

7. In normal data transfer, the data line only changes state when the clock is low.

8. Master waits for the acknowledgement bit from the slave device whose address is sent on
the bus along with the Read/Write operation command.

MRCET ECE ESD UNIT-3 NOTES

91

9. Slave devices connected to the bus compares the address received with the address

assigned to them

10. The Slave device with the address requested by the master device responds by sending an

acknowledge bit (Bit value =1) over the SDA line

11. Upon receiving the acknowledge bit, master sends the 8bit data to the slave device over

SDA line, if the requested operation is „Write to device‟.

12. If the requested operation is „Read from device‟, the slave device sends data to the

master over the SDA line.

13. Master waits for the acknowledgement bit from the device upon byte transfer complete for

a write operation and sends an acknowledge bit to the slave device for a read operation

14. Master terminates the transfer by pulling the SDA line „HIGH‟ when the clock line SCL

is at logic „HIGH‟ (Indicating the „STOP‟ condition).

MRCET ECE ESD UNIT-3 NOTES

92

1.2 Serial Peripheral Interface (SPI) Bus:

The Serial Peripheral Interface Bus (SPI) is a synchronous bi-directional full duplex four wire

serial interface bus. The concept of SPI is introduced by Motorola.SPI is a single master multi-
slave system.

It is possible to have a system where more than one SPI device can be master, provided
the condition only one master device is active at any given point of time, is satisfied.

SPI is used to send data between Microcontrollers and small peripherals such as shift
registers, sensors, and SD cards.

SPI requires four signal lines for communication. They are:

Master Out Slave In (MOSI): Signal line carrying the data from master to slave device. It is

also known as Slave Input/Slave Data In (SI/SDI)

Master In Slave Out (MISO): Signal line carrying the data from slave to master device. It is

also known as Slave Output (SO/SDO)

MRCET ECE ESD UNIT-3 NOTES

93

Serial Clock (SCLK): Signal line carrying the clock signals

Slave Select (SS): Signal line for slave device select. It is an active low signal.

The master device is responsible for generating the clock signal.

Master device selects the required slave device by asserting the corresponding slave devices

slave select signal „LOW‟.

 The data out line (MISO) of all the slave devices when not selected floats at high impedance

state

 The serial data transmission through SPI Bus is fully configurable.

 SPI devices contain certain set of registers for holding these configurations.

 The Serial Peripheral Control Register holds the various configuration parameters like

master/slave selection for the device, baudrate selection for communication, clock signal

control etc.

 The status register holds the status of various conditions for transmission and reception.SPI

works on the principle of „Shift Register‟.

 The master and slave devices contain a special shift register for the data to transmit or receive.

 The size of the shift register is device dependent. Normally it is a multiple of 8.

 During transmission from the master to slave, the data in the master‟s shift register is

shifted out to the MOSI pin and it enters the shift register of the slave device through the

MOSI pin of the slave device.

MRCET ECE ESD UNIT-3 NOTES

94

 At the same time the shifted out data bit from the slave device’s shift register enters the

shift register of the master device through MISO pin

I2C V/S SPI:

MRCET ECE ESD UNIT-3 NOTES

95

PARALLEL COMMUNICATION:

In data transmission, parallel communication is a method of conveying multiple binary

digits (bits) simultaneously. It contrasts with communication. The communication channel is the

number of electrical conductors used at the physical layer to convey bits.

Parallel communication implies more than one such conductor. For example, an 8-bit

parallel channel will convey eight bits (or a byte) simultaneously, whereas a serial channel would

convey those same bits sequentially, one at a time. Parallel communication is and always has been

widely used within integrated circuits, in peripheral buses, and in memory devices such as RAM.

2. Product level communication interface (External Communication

Interface): The Product level communication interface‟ (External Communication Interface) is
responsible for data transfer between the embedded system and other devices or modules

It is classified into two types

1. Wired communication interface
2. Wireless communication interface:

1. Wired communication interface: Wired communication interface is an interface used to

transfer information over a wired network.

It is classified into following types.

1. RS-232C/RS-422/RS 485

2. USB

https://en.wikipedia.org/wiki/Data_transmission
https://en.wikipedia.org/wiki/Bit
https://en.wikipedia.org/wiki/Communication_channel
https://en.wikipedia.org/wiki/Communication_channel
https://en.wikipedia.org/wiki/Physical_layer
https://en.wikipedia.org/wiki/Physical_layer
https://en.wikipedia.org/wiki/Physical_layer
https://en.wikipedia.org/wiki/Byte
https://en.wikipedia.org/wiki/Integrated_circuit
https://en.wikipedia.org/wiki/Integrated_circuit
https://en.wikipedia.org/wiki/Peripheral
https://en.wikipedia.org/wiki/Random-access_memory

MRCET ECE ESD UNIT-3 NOTES

96

RS-232C:

 RS-232 C (Recommended Standard number 232, revision C from the Electronic Industry

Association) is a legacy, full duplex, wired, asynchronous serial communication interface

 RS-232 extends the UART communication signals for external data communication.

 UART uses the standard TTL/CMOS logic (Logic „High‟ corresponds to bit value 1 and

Logic „LOW‟ corresponds to bit value 0) for bit transmission whereas RS232 use the EIA

standard for bit transmission.

 As per EIA standard, a logic „0‟ is represented with voltage between +3 and +25V and a

logic „1‟ is represented with voltage between -3 and -25V.

 In EIA standard, logic „0‟ is known as „Space‟ and logic „1‟ as „Mark‟.

The RS232 interface define various handshaking and control signals for communication

apart from the „Transmit‟ and „Receive‟ signal lines for data communication

RS-232 supports two different types of connectors, namely; DB-9: 9-Pin connector and DB-25:

25-Pin connector.

MRCET ECE ESD UNIT-3 NOTES

97

Fig: DB-25:25-Pin connector.

Fig: DB-9:9-Pin connector.

MRCET ECE ESD UNIT-3 NOTES

98

 RS-232 is a point-to-point communication interface and the devices involved in RS-232

communication are called „Data Terminal Equipment (DTE)‟ and „Data Communication

Equipment (DCE)‟.

 If no data flow control is required, only TXD and RXD signal lines and ground line (GND)

are required for data transmission and reception.

 The RXD pin of DCE should be connected to the TXD pin of DTE and vice versa for proper

data transmission.

 If hardware data flow control is required for serial transmission, various control signal lines of

the RS-232 connection are used appropriately.

 The control signals are implemented mainly for modem communication and some of them may

be irrelevant for other type of devices.

 The Request to Send (RTS) and Clear To Send (CTS) signals co-ordinate the communication

between DTE and DCE.

 Whenever the DTE has a data to send, it activates the RTS line and if the DCE is ready to

accept the data, it activates the CTS line.

 The Data Terminal Ready (DTR) signal is activated by DTE when it is ready to accept data.

 The Data Set Ready (DSR) is activated by DCE when it is ready for establishing a

communication link.

 DTR should be in the activated state before the activation of DSR.

 The Data Carrier Detect (DCD) is used by the DCE to indicate the DTE that a good signal is

being received.

MRCET ECE ESD UNIT-3 NOTES

99

 Ring Indicator (RI) is a modem specific signal line for indicating an incoming call on the

telephone line.

 As per the EIA standard RS-232 C supports baudrates up to 20Kbps (Upper limit 19.2Kbps).

 The commonly used baudrates by devices are 300bps, 1200bps, 2400bps, 9600bps,

11.52Kbps and 19.2Kbps.

 The maximum operating distance supported in RS-232 communication is 50 feet at the

highest supported baudrate.

 Embedded devices contain a UART for serial communication and they generate signal levels

conforming to TTL/CMOS logic.

 A level translator IC like MAX 232 from Maxim Dallas semiconductor is used for converting

the signal lines from the UART to RS-232 signal lines for communication.

 On the receiving side the received data is converted back to digital logic level by a converter

IC.

 Converter chips contain converters for both transmitter and receiver.

 RS-232 uses single ended data transfer and supports only point-to-point communication and

not suitable for multi-drop communication.

USB (UNIVERSAL SERIAL BUS):

 External Bus Standard.

 Allows connection of peripheral devices.

 Connects Devices such as keyboards, mice, scanners, printers, joysticks, audio

devices, disks.

 Facilitates transfers of data at 480 (USB 2.0 only), 12 or 1.5 Mb/s (mega-

bits/second).

 Developed by a Special Interest Group including Intel, Microsoft, Compact, DEC,

IBM, Northern Telecom and NEC originally in 1994.

 Low-Speed: 10 – 100 kb/s

 1.5 Mb/s signaling bit rate

 Full-Speed: 500 kb/s – 10 Mb/s 12 Mb/s signaling bit rate

 High-Speed: 400 Mb/s

MRCET ECE ESD UNIT-3 NOTES

100

 480 Mb/s signaling bit rate

 NRZI with bit stuffing used

 SYNC field present for every packet

 There exist two pre-defined connectors in any USB system - Series “A” and Series “B”

Connectors.

 Series “A” cable: Connects USB devices to a hub port.

 Series “B” cable: Connects detachable devices (hot- swappable)

Bus Topology:

 Connects computer to peripheral devices.

 Ultimately intended to replace parallel and serial ports

 Tiered Star Topology

 All devices are linked to a common point referred to as the root hub.

7
 Specification allows for up to 127 (2 -1) different devices.

 Four wire cable serves as interconnect of system - power, ground and two differential

signaling lines.

 USB is a polled bus-all transactions are initiated by host.

MRCET ECE ESD UNIT-3 NOTES

101

USB HOST: Device that controls entire system usually a PC of some form. Processes data arriving

to and from the USB port.

USB HUB: Tests for new devices and maintains status information of child devices.Serve as

repeaters, boosting strength of up and downstream signals. Electrically isolates devices from one

another - allowing an expanded number of devices.

2.Wireless communication interface : Wireless communication interface is an interface used to

transmission of information over a distance without help of wires, cables or any other forms of

electrical conductors.

They are basically classified into following types

1. Infrared
2. Bluetooth
3. Wi-Fi
4. Zigbee

5. GPRS

INFRARED:

 Infrared is a certain region in the light spectrum

 Ranges from .7µ to 1000µ or .1mm

 Broken into near, mid, and far infrared

 One step up on the light spectrum from visible light

 Measure of heat

Most of the thermal radiation emitted by objects near room temperature is infrared. Infrared

radiation is used in industrial, scientific, and medical applications. Night-vision devices using

active near-infrared illumination allow people or animals to be observed without the observer

being detected.

https://en.wikipedia.org/wiki/Thermal_radiation

MRCET ECE ESD UNIT-3 NOTES

102

IR transmission:

The transmitter of an IR LED inside its circuit, which emits infrared light for every electric pulse

given to it. This pulse is generated as a button on the remote is pressed, thus completing the circuit,

providing bias to the LED.

The LED on being biased emits light of the wavelength of 940nm as a series of pulses,

corresponding to the button pressed. However since along with the IR LED many other sources

of infrared light such as us human beings, light bulbs, sun, etc, the transmitted information can be

interfered. A solution to this problem is by modulation. The transmitted signal is modulated using

a carrier frequency of 38 KHz (or any other frequency between 36 to 46 KHz). The IR LED is

made to oscillate at this frequency for the time duration of the pulse. The information or the light

signals are pulse width modulated and are contained in the 38 KHz frequency.

IR supports data rates ranging from 9600bits/second to 16Mbps

Serial infrared: 9600bps to 115.2 kbps

Medium infrared: 0.576Mbps to 1.152 Mbps

Fast infrared: 4Mbps

BLUETOOTH:

Bluetooth is a wireless technology standard for short distances (using short-wavelength UHF

band from 2.4 to 2.485 GHz)for exchanging data over radio waves in the ISM and mobile

devices, and building personal area networks (PANs).Invented by telecom vendor Ericsson in

1994, it was originally conceived as a wireless alternative to RS- 232 data cables.

https://en.wikipedia.org/wiki/Wireless
https://en.wikipedia.org/wiki/ISM_band
https://en.wikipedia.org/wiki/ISM_band
https://en.wikipedia.org/wiki/ISM_band
https://en.wikipedia.org/wiki/ISM_band
https://en.wikipedia.org/wiki/ISM_band
https://en.wikipedia.org/wiki/ISM_band
https://en.wikipedia.org/wiki/ISM_band
https://en.wikipedia.org/wiki/ISM_band
https://en.wikipedia.org/wiki/ISM_band
https://en.wikipedia.org/wiki/ISM_band
https://en.wikipedia.org/wiki/Personal_area_network
https://en.wikipedia.org/wiki/Ericsson
https://en.wikipedia.org/wiki/RS-232
https://en.wikipedia.org/wiki/RS-232

MRCET ECE ESD UNIT-3 NOTES

103

Bluetooth uses a radio technology called frequency- hopping spread spectrum. Bluetooth

divides transmitted data into packets, and transmits each packet on one of 79 designated Bluetooth

channels. Each channel has a bandwidth of 1 MHz. It usually performs 800 hops per second, with

Adaptive Frequency-Hopping (AFH) enabled

Originally, Gaussian frequency-shift keying (GFSK) modulation was the only modulation

scheme available. Since the introduction of Bluetooth 2.0+EDR, π/4-DQPSK (Differential

Quadrature Phase Shift Keying) and 8DPSK modulation may also be used between compatible

devices. Bluetooth is a packet-based protocol with a master- slave structure. One master may

communicate with up to seven slaves in a piconet. All devices share the master's clock. Packet

exchange is based on the basic clock, defined by the master, which ticks at312.5 µs intervals.

A master BR/EDR Bluetooth device can communicate with a maximum of seven devices

in a piconet (an ad-hoc computer network using Bluetooth technology), though not all devices

reach this maximum. The devices can switch roles, by agreement, and the slave can become the

master (for example, a headset initiating a connection to a phone necessarily begins as master—

as initiator of the connection—but may subsequently operate as slave).

Wi-Fi:

 Wi-Fi is the name of a popular wireless networking technology that uses radio waves to

provide wireless high-speed Internet and network connections

 Wi-Fi follows the IEEE 802.11 standard

 Wi-Fi is intended for network communication and it supports Internet Protocol (IP) based

communication

 Wi-Fi based communications require an intermediate agent called Wi-Fi router/Wireless

Access point to manage the communications.

 The Wi-Fi router is responsible for restricting the access to a network, assigning IP address to

devices on the network, routing data packets to the intended devices on the network.

https://en.wikipedia.org/wiki/Frequency-hopping_spread_spectrum
https://en.wikipedia.org/wiki/Frequency-hopping_spread_spectrum
https://en.wikipedia.org/wiki/Frequency-hopping_spread_spectrum
https://en.wikipedia.org/wiki/Frequency-hopping_spread_spectrum
https://en.wikipedia.org/wiki/Frequency-hopping_spread_spectrum
https://en.wikipedia.org/wiki/Frequency-hopping_spread_spectrum
https://en.wikipedia.org/wiki/Adaptive_frequency-hopping_spread_spectrum
https://en.wikipedia.org/wiki/Adaptive_frequency-hopping_spread_spectrum
https://en.wikipedia.org/wiki/Gaussian_frequency-shift_keying
https://en.wikipedia.org/wiki/DQPSK
https://en.wikipedia.org/wiki/Packet_based
https://en.wikipedia.org/wiki/Master-slave_(technology)
https://en.wikipedia.org/wiki/Master-slave_(technology)
https://en.wikipedia.org/wiki/Piconet

MRCET ECE ESD UNIT-3 NOTES

104

 Wi-Fi enabled devices contain a wireless adaptor for transmitting and receiving data in the

form of radio signals through an antenna.

 Wi-Fi operates at 2.4GHZ or 5GHZ of radio spectrum and they co-exist with other ISM

band devices like Bluetooth.

 A Wi-Fi network is identified with a Service Set Identifier (SSID). A Wi-Fi device can

connect to a network by selecting the SSID of the network and by providing the credentials

if the network is security enabled

 Wi-Fi networks implements different security mechanisms for authentication and data

transfer.

 Wireless Equivalency Protocol (WEP), Wireless Protected Access (WPA) etc are some of

the security mechanisms supported by Wi-Fi networks in data communication.

ZIGBEE:

Zigbee is an IEEE 802.15.4-based specification for a suite of high- level communication protocols

used to create personal area networks with small, low-power digital radios, such as for home

automation, medical device data collection, and other low-power low-bandwidth needs, designed

for small scale projects which need wireless connection.Hence, zigbee is a low-power, low data

rate, and close proximity (i.e., personal area) wireless ad hoc network.The technology

https://en.wikipedia.org/wiki/IEEE_802.15.4
https://en.wikipedia.org/wiki/Specification_(technical_standard)
https://en.wikipedia.org/wiki/Personal_area_network
https://en.wikipedia.org/wiki/Personal_area_network
https://en.wikipedia.org/wiki/Digital_radio
https://en.wikipedia.org/wiki/Wireless_ad_hoc_network
https://en.wikipedia.org/wiki/Wireless_ad_hoc_network

MRCET ECE ESD UNIT-3 NOTES

105

defined by the zigbee specification is intended to be simpler and less expensive than other

wireless personal area networks (WPANs), such as Bluetooth or Wi-Fi . Applications include

wireless light switches, electrical meters with in-home-displays, traffic management systems, and

other consumer and industrial equipment that require short-range low- rate wireless data transfer.

Its low power consumption limits transmission distances to 10– 100 meters line-of-sight,

depending on power output and environmental characteristics. Zigbee devices can transmit data

over long distances by passing data through a mesh network of intermediate devices to reach

more distant ones.

Zigbee Coordinator: The zigbee coordinator acts as the root of the zigbee network. The ZC is

responsible for initiating the Zigbee network and it has the capability to store information about

the network.

Zigbee Router: Responsible for passing information from device to another device or to another

ZR.

Zigbee end device:End device containing zigbee functionality for data communication. It can talk

only with a ZR or ZC and doesn’t have the capability to act as a mediator for transferring data

from one device to another.

Zigbee supports an operating distance of up to 100 metres at a data rate of 20 to 250 Kbps.

https://en.wikipedia.org/wiki/Personal_area_network
https://en.wikipedia.org/wiki/Personal_area_network
https://en.wikipedia.org/wiki/Personal_area_network
https://en.wikipedia.org/wiki/Personal_area_network
https://en.wikipedia.org/wiki/Bluetooth
https://en.wikipedia.org/wiki/Wi-Fi
https://en.wikipedia.org/wiki/Line-of-sight_propagation
https://en.wikipedia.org/wiki/Mesh_networking

MRCET ECE ESD UNIT-3 NOTES

106

General Packet Radio Service(GPRS):

General Packet Radio Service (GPRS) is a packet oriented mobile data service on the 2G and

3G cellular communication system's global system for mobile communications (GSM).GPRS was

originally standardized by European Telecommunications Standards Institute (ETSI) GPRS usage

is typically charged based on volume of data transferred, contrasting with circuit switched data,

which is usually billed per minute of connection time. Sometimes billing time is broken down to

every third of a minute. Usage above the bundle cap is charged per megabyte, speed limited, or

disallowed.

Services offered:

 GPRS extends the GSM Packet circuit switched data capabilities and makes the

following services possible:

 SMS messaging and broadcasting

 "Always on" internet access

 Multimedia messaging service (MMS)

 Push-to-talk over cellular (PoC)

 Instant messaging and presence-wireless village Internet applications for smart devices

through wireless application protocol (WAP).

 Point-to-point (P2P) service: inter-networking with the Internet (IP).

 Point-to-multipoint (P2M) service]: point-to- multipoint multicast and point-to-multipoint

group calls.

Text Book:-

1. Introduction to Embedded Systems – Shibu K.V Mc Graw Hill

https://en.wikipedia.org/wiki/Packet_oriented
https://en.wikipedia.org/wiki/Packet_oriented
https://en.wikipedia.org/wiki/Packet_oriented
https://en.wikipedia.org/wiki/Cellular_communication
https://en.wikipedia.org/wiki/Cellular_communication
https://en.wikipedia.org/wiki/Cellular_communication
https://en.wikipedia.org/wiki/Global_System_for_Mobile_Communications
https://en.wikipedia.org/wiki/Global_System_for_Mobile_Communications
https://en.wikipedia.org/wiki/Global_System_for_Mobile_Communications
https://en.wikipedia.org/wiki/Global_System_for_Mobile_Communications
https://en.wikipedia.org/wiki/European_Telecommunications_Standards_Institute
https://en.wikipedia.org/wiki/European_Telecommunications_Standards_Institute
https://en.wikipedia.org/wiki/European_Telecommunications_Standards_Institute
https://en.wikipedia.org/wiki/European_Telecommunications_Standards_Institute
https://en.wikipedia.org/wiki/Circuit_switching
https://en.wikipedia.org/wiki/Product_bundling
https://en.wikipedia.org/wiki/Product_bundling
https://en.wikipedia.org/wiki/Product_bundling
https://en.wikipedia.org/wiki/Product_bundling
https://en.wikipedia.org/wiki/Product_bundling
https://en.wikipedia.org/wiki/Product_bundling
https://en.wikipedia.org/wiki/Product_bundling
https://en.wikipedia.org/wiki/Product_bundling
https://en.wikipedia.org/wiki/Product_bundling
https://en.wikipedia.org/wiki/Product_bundling
https://en.wikipedia.org/wiki/SMS
https://en.wikipedia.org/wiki/Multimedia_Messaging_Service
https://en.wikipedia.org/wiki/Push-to-talk
https://en.wikipedia.org/wiki/Instant_messaging
https://en.wikipedia.org/wiki/Wireless_Village
https://en.wikipedia.org/wiki/Wireless_Village
https://en.wikipedia.org/wiki/Wireless_Village
https://en.wikipedia.org/wiki/Wireless_Application_Protocol
https://en.wikipedia.org/wiki/Wireless_Application_Protocol
https://en.wikipedia.org/wiki/Wireless_Application_Protocol
https://en.wikipedia.org/wiki/Wireless_Application_Protocol
https://en.wikipedia.org/wiki/Point-to-point_(telecommunications)
https://en.wikipedia.org/wiki/Point-to-multipoint_communication

Embedded Systems Unit-4 Notes

107

Introduction

The control algorithm (Program instructions) and or the configuration settings

that an embedded system developer dumps into the code (Program) memory

of the embedded system

It is an un-avoidable part of an embedded system.

The embedded firmware can be developed in various methods like

o Write the program in high level languages like Embedded C/C++ using

an Integrated Development Environment (The IDE will contain an

editor, compiler, linker, debugger, simulator etc. IDEs are different for

different family of processors/controllers.

o Write the program in Assembly Language using the Instructions
Supported by your application’s target processor/controller

Embedded Firmware Design & Development:

The embedded firmware is responsible for controlling the various peripherals

of the embedded hardware and generating response in accordance with the

functional requirements of the product.

The embedded firmware is the master brain of the embedded system.

The embedded firmware imparts intelligence to an Embedded system.

It is a onetime process and it can happen at any stage.

The product starts functioning properly once the intelligence imparted to the

product by embedding the firmware in the hardware.

The product will continue serving the assigned task till hardware breakdown

occurs or a corruption in embedded firmware.

In case of hardware breakdown, the damaged component may need to be

replaced and for firmware corruptions the firmware should be re-loaded, to

bring back the embedded product to the normal functioning.

The embedded firmware is usually stored in a permanent memory (ROM)

Embedded Systems Unit-4 Notes

108

and it is non alterable by end users.

Designing Embedded firmware requires understanding of the particular

embedded product hardware, like various component interfacing, memory

map details, I/O port details, configuration and register details of various

hardware chips used and some programming language (either low level

Assembly Language or High level language like C/C++ or a combination of

the two)

The embedded firmware development process starts with the conversion of

the firmware requirements into a program model using various modeling

tools.

The firmware design approaches for embedded product is purely dependent

on the complexity of the functions to be performed and speed of operation

required.

There exist two basic approaches for the design and implementation of

embedded firmware, namely;

 The Super loop based approach

 The Embedded Operating System based approach

The decision on which approach needs to be adopted for firmware

development is purely dependent on the complexity and system requirements

1. Embedded firmware Design Approaches – The Super loop:

The Super loop based firmware development approach is Suitable for

applications that are not time critical and where the response time is not so

important (Embedded systems where missing deadlines are acceptable).

It is very similar to a conventional procedural programming where the code

is executed task by task

The tasks are executed in a never ending loop.

Embedded Systems Unit-4 Notes

109

The task listed on top on the program code is executed first and the tasks just

below the top are executed after completing the first task

A typical super loop implementation will look like:

1. Configure the common parameters and perform initialization for

various hardware components memory, registers etc.

2. Start the first task and execute it

3. Execute the second task

4. Execute the next task

5. :

6. :

7. Execute the last defined task

8. Jump back to the first task and follow the same flow.

The ‘C’ program code for the super loop is given below

void main ()

{

Configurations ();

Initializations ();

while (1)

{

Task 1 ();

Task 2 ();
:

:

Task n ();

}

}

Embedded Systems Unit-4 Notes

110

Pros:

Cons:

Doesn’t require an Operating System for task scheduling and monitoring and

free from OS related overheads

Simple and straight forward design

Reduced memory footprint

Non Real time in execution behavior (As the number of tasks increases the

frequency at which a task gets CPU time for execution also increases)

Any issues in any task execution may affect the functioning of the product

(This can be effectively tackled by using Watch Dog Timers for task

execution monitoring)

Enhancements:

 Combine Super loop based technique with interrupts

 Execute the tasks (like keyboard handling) which require Real time attention

as Interrupt Service routines.

2. Embedded firmware Design Approaches – Embedded OS based Approach:

The embedded device contains an Embedded Operating System which can

be one of:

 A Real Time Operating System (RTOS)

 A Customized General Purpose Operating System (GPOS)

Embedded Systems Unit-4 Notes

111

The Embedded OS is responsible for scheduling the execution of user tasks

and the allocation of system resources among multiple tasks

It Involves lot of OS related overheads apart from managing and executing

user defined tasks

Microsoft® Windows XP Embedded is an example of GPOS for embedded

devices

Point of Sale (PoS) terminals, Gaming Stations, Tablet PCs etc are examples

of embedded devices running on embedded GPOSs

‘Windows CE’, ‘Windows Mobile’,‘QNX’, ‘VxWorks’, ‘ThreadX’,

‘MicroC/OS-II’, ‘Embedded Linux’, ‘Symbian’ etc are examples of RTOSs

employed in Embedded Product development

Mobile Phones, PDAs, Flight Control Systems etc are examples of embedded

devices that runs on RTOSs

Embedded firmware Development Languages/Options

Assembly Language

High Level Language

o Subset of C (Embedded C)

o Subset of C++ (Embedded C++)

o Any other high level language with supported Cross-compiler

Mix of Assembly & High level Language

o Mixing High Level Language (Like C) with Assembly Code

o Mixing Assembly code with High Level Language (Like C)

o Inline Assembly

Embedded Systems Unit-4 Notes

112

1. Embedded firmware Development Languages/Options – Assembly

Language

‘Assembly Language’ is the human readable notation of ‘machine

language’

‘Machine language’ is a processor understandable language

Machine language is a binary representation and it consists of 1s and 0s

Assembly language and machine languages are processor/controller

dependent

An Assembly language program written for one processor/controller family

will not work with others

Assembly language programming is the process of writing processor specific

machine code in mnemonic form, converting the mnemonics into actual

processor instructions (machine language) and associated data using an

assembler

The general format of an assembly language instruction is an Opcode

followed by Operands

The Opcode tells the processor/controller what to do and the Operands provide

the data and information required to perform the action specified by the

opcode

It is not necessary that all opcode should have Operands following them.

Some of the Opcode implicitly contains the operand and in such situation no

operand is required. The operand may be a single operand, dual operand or

more

The 8051 Assembly Instruction

MOV A, #30

Moves decimal value 30 to the 8051 Accumulator register. Here MOV A is the

Opcode and 30 is the operand (single operand). The same instruction when written

in machine language will look like

Embedded Systems Unit-4 Notes

113

01110100 00011110

The first 8 bit binary value 01110100 represents the opcode MOV A and the second

8 bit binary value 00011110 represents the operand 30.

Assembly language instructions are written one per line

A machine code program consists of a sequence of assembly language

instructions, where each statement contains a mnemonic (Opcode + Operand)

Each line of an assembly language program is split into four fields as:

LABEL OPCODE OPERAND COMMENTS

LABEL is an optional field. A ‘LABEL’ is an identifier used extensively in

programs to reduce the reliance on programmers for remembering where data

or code is located. LABEL is commonly used for representing

 A memory location, address of a program, sub-routine, code portion etc.

 The maximum length of a label differs between assemblers. Assemblers

insist strict formats for labeling. Labels are always suffixed by a colon

and begin with a valid character. Labels can contain number from 0 to

9 and special character _ (underscore).

;###

; SUBROUTINE FOR GENERATING DELAY

; DELAY PARAMETR PASSED THROUGH REGISTER R1

; RETURN VALUE NONE,REGISTERS USED: R0, R1

;###

DELAY: MOV R0, #255 ; Load Register R0 with 255

DJNZ R1, DELAY; Decrement R1 andloop till R1= 0

RET ; Return to calling program

Embedded Systems Unit-4 Notes

114

 The symbol ; represents the start of a comment. Assembler ignores the

text in a line after the ; symbol while assembling the program

 DELAY is a label for representing the start address of the memory

location where the piece of code is located in code memory

 The above piece of code can be executed by giving the label DELAY as

part of the instruction. E.g. LCALL DELAY; LMP DELAY

2. Assembly Language – Source File to Hex File Translation:

The Assembly language program written in assembly code is saved as
.asm (Assembly file) file or a .src (source) file or a format supported by

the assembler

Similar to ‘C’ and other high level language programming, it is possible

to have multiple source files called modules in assembly language

programming. Each module is represented by a ‘.asm’ or ‘.src’ file or the

assembler supported file format similar to the ‘.c’ files in C programming

The software utility called ‘Assembler’ performs the translation of

assembly code to machine code

The assemblers for different family of target machines are different. A51

Macro Assembler from Keil software is a popular assembler for the 8051

family micro controller

Figure 5: Assembly Language to machine language conversion process

Embedded Systems Unit-4 Notes

115

Each source file can be assembled separately to examine the syntax errors

and incorrect assembly instructions

Assembling of each source file generates a corresponding object file. The

object file does not contain the absolute address of where the generated

code needs to be placed (a re-locatable code) on the program memory

The software program called linker/locater is responsible for assigning

absolute address to object files during the linking process

The Absolute object file created from the object files corresponding to

different source code modules contain information about the address where

each instruction needs to be placed in code memory

A software utility called ‘Object to Hex file converter’ translates the

absolute object file to corresponding hex file (binary file)

Advantages:

 1.Efficient Code Memory & Data Memory Usage (Memory Optimization):

 The developer is well aware of the target processor architecture and

memory organization, so optimized code can be written for performing

operations.

 This leads to less utilization of code memory and efficient utilization

of data memory.

 2.High Performance:

 Optimized code not only improves the code memory usage but also

improves the total system performance.

 Through effective assembly coding, optimum performance can be

achieved for target processor.

 3.Low level Hardware Access:

 Most of the code for low level programming like accessing external

device specific registers from OS kernel ,device drivers, and low level

interrupt routines, etc are making use of direct assembly coding.

Embedded Systems Unit-4 Notes

116

 4.Code Reverse Engineering:

 It is the process of understanding the technology behind a product by

extracting the information from the finished product.

 It can easily be converted into assembly code using a dis-assembler

program for the target machine.

Drawbacks:

 1.High Development time:

 The developer takes lot of time to study about architecture ,memory

organization, addressing modes and instruction set of target

processor/controller.

 More lines of assembly code is required for performing a simple action.

 2.Developer dependency:

 There is no common written rule for developing assembly language

based applications.

 3.Non portable:

 Target applications written in assembly instructions are valid only for

that particular family of processors and cannot be re-used for another

target processors/controllers.

 If the target processor/controller changes, a complete re-writing of the

application using assembly language for new target

processor/controller is required.

2. Embedded firmware Development Languages/Options – High Level

Language

The embedded firmware is written in any high level language like C, C++

A software utility called ‘cross-compiler’ converts the high level language to

target processor specific machine code

Embedded Systems Unit-4 Notes

117

 The cross-compilation of each module generates a corresponding object file.

The object file does not contain the absolute address of where the generated

code needs to be placed (a re-locatable code) on the program memory

 The software program called linker/locater is responsible for assigning

absolute address to object files during the linking process

 The Absolute object file created from the object files corresponding to

different source code modules contain information about the address where

each instruction needs to be placed in code memory

 A software utility called ‘Object to Hex file converter’ translates the absolute

object file to corresponding hex file (binary file)

Embedded firmware Development Languages/Options – High Level

Language – Source File to Hex File Translation

Machine Code

(Hex File)

Figure 6: High level language to machine language conversion process

Library Files

Source File 1

(.c /.c++ etc)

(Module-1)

Module

Cross-compiler

Object File 1

Source File 2

(.c /.c++ etc)

(Module-2)

Module

Cross-compiler

Object File 2

Object to Hex File

Converter

Absolute Object File
Linker/

Locator

Embedded Systems Unit-4 Notes

118

Advantages:

Reduced Development time: Developer requires less or little

Drawbacks:

knowledge on internal hardware details and architecture of the target

processor/Controller.

Developer independency: The syntax used by most of the high level

languages are universal and a program written high level can easily

understand by a second person knowing the syntax of the language

Portability: An Application written in high level language for

particular target processor /controller can be easily be converted to

another target processor/controller specific application with little or

less effort

• The cross compilers may not be efficient in generating the optimized

target processor specific instructions.

• Target images created by such compilers may be messy and non-

optimized in terms of performance as well as code size.

• The investment required for high level language based development

tools (IDE) is high compared to Assembly Language based firmware

development tools.

Embedded firmware Development Languages/Options – Mixing of Assembly

Language with High Level Language

Embedded firmware development may require the mixing of Assembly

Language with high level language or vice versa.

Interrupt handling, Source code is already available in high level

language\Assembly Language etc are examples

Embedded Systems Unit-4 Notes

119

High Level language and low level language can be mixed in three different

ways

 Mixing Assembly Language with High level language like ‘C’

 Mixing High level language like ‘C’ with Assembly Language

 In line Assembly

The passing of parameters and return values between the high level and low

level language is cross-compiler specific

1. Mixing Assembly Language with High level language like ‘C’

(Assembly Language with ‘C’):

Assembly routines are mixed with ‘C’ in situations where the entire program

is written in ‘C’ and the cross compiler in use do not have built in support for

implementing certain features like ISR.

If the programmer wants to take advantage of the speed and optimized code

offered by the machine code generated by hand written assembly rather than

cross compiler generated machine code.

For accessing certain low level hardware ,the timing specifications may be

very critical and cross compiler generated machine code may not be able to

offer the required time specifications accurately.

Writing the hardware/peripheral access routine in processor/controller

specific assembly language and invoking it from ‘C’ is the most advised

method.

Mixing ‘C’ and assembly is little complicated.

The programmer must be aware of how to pass parameters from the ‘C’

routine to assembly and values returned from assembly routine to ‘C’ and how

Assembly routine is invoked from the ‘C’ code.

Embedded Systems Unit-4 Notes

120

Passing parameter to the assembly routine and returning values from the

assembly routine to the caller ‘C’ function and the method of invoking the

assembly routine from ‘C’ code is cross compiler dependent.

There is no universal written rule for purpose.

We can get this information from documentation of the cross compiler.

Different cross compilers implement these features in different ways

depending on GPRs and memory supported by target processor/controller

2. Mixing High level language like ‘C’ with Assembly Language

(‘C’ with Assembly Language)

The source code is already available in assembly language and routine written

in a high level language needs to be included to the existing code.

The entire source code is planned in Assembly code for various reasons like

optimized code, optimal performance, efficient code memory utilization and

proven expertise in handling the assembly.

The functions written in ‘C’ use parameter passing to the function and returns

values to the calling functions.

The programmer must be aware of how parameters are passed to the function

and how values returned from the function and how function is invoked from

the assembly language environment.

Passing parameter to the function and returning values from the function using

CPU registers , stack memory and fixed memory.

Its implementation is cross compiler dependent and varies across compilers.

Embedded Systems Unit-4 Notes

121

3. In line Assembly:

• Inline assembly is another technique for inserting the target

processor/controller specific assembly instructions at any location of source

code written in high level language ‘C’

• Inline Assembly avoids the delay in calling an assembly routine from a ‘C’

code.

• Special keywords are used to indicate the start and end of Assembly

instructions

• E.g #pragma asm

Mov A,#13H

#pragma ensasm

• Keil C51 uses the keywords #pragma asm and #pragma endasm to indicate

a block of code written in assembly.

Text Books:

1. Introduction to Embedded Systems – Shibu K.V Mc Graw Hill

2. Embedded System Design-Raj Kamal TMH

EMBEDDED PROGRAMMING

Assembly language is introduced for providing mnemonics or symbols for the machine level code

instructions. Assembly language program is consisting of mnemonics that is translated into

machine code. A program that is used for this conversion is known as assembler.

Assembly language is also called as low-level language because it directly works with the internal

structure of CPU. For programming in assembly language, a programmer must have the knowledge

of all the registers in a CPU.

Different programming languages like C, C++, Java and various other languages are called as

high-level languages because they are not dealing with the internal details of CPU.

In contrast, an assembler is used to translate an assembly language program into machine code

(sometimes also called object code or opcode). Similarly, a compiler translates a high-level

language into machine code. For example, to write a program in C language, one must use a C

compiler to translate the program into machine language.

Structure of Assembly Language

An assembly language program is a series of statements, which are either assembly language

instructions such as ADD and MOV, or statements called directives.

An instruction tells the CPU what to do, while a directive (also called pseudo-instructions) gives

instruction to the assembler. For example, ADD and MOV instructions are commands which the

CPU runs, while ORG and END are assembler directives. The assembler places the opcode to the

memory location 0 when the ORG directive is used, while END indicates to the end of the source

code. A program language instruction consists of the following four fields –

[label:] mnemonics [operands] [;comment]

1. 0000 ORG 0H ;start (origin) at location 0

2. 0000 7D25 MOV R5,#25H ;load 25H into R5

3. 0002 7F34 MOV R7,#34H ;load 34H into R7

4. 0004 7400 MOV A,#0 ;load 0 into A

5. 0006 2D ADD A,R5 ;add contents of R5 to A

6. 0007 2F ADD A,R7 ;add contents of R7 to A

7. 0008 2412 ADD A,#12H ;add to A value 12 H

8. 000A 80FE HERE: SJMP HERE ;stay in this loop

9. 000C END ;end of asm source

file

A square bracket ([]) indicates that the field is optional.

 The label field allows the program to refer to a line of code by name. The label fields cannot

exceed a certain number of characters.

 The mnemonics and operands fields together perform the real work of the program and

accomplish the tasks. Statements like ADD A , C & MOV C, #68 where ADD and MOV

are the mnemonics, which produce opcodes ; "A, C" and "C, #68" are operands. These two

fields could contain directives. Directives do not generate machine code and are used only

by the assembler, whereas instructions are translated into machine code for the CPU to

execute.

 The comment field begins with a semicolon which is a comment indicator.

 Notice the Label "HERE" in the program. Any label which refers to an instruction should

be followed by a colon.

Assembling and Running of 8051 Program

Let's see the steps for creating, assembling and running an assembly language program are as

follows:

o Editor Program : At first, we use an editor for type in a program. Editors like MS-DOS

program that comes with all Microsoft operating systems can be used for creating or edit

a program. The editor produces an ASCII file. The ?asm? extension for a source file is used

by an assembler during next step.

o Assembler Program: The "asm" source file contain the code created in Step 1. It is

transferred to an 8051 assembler. The assembler is used for converting the assembly

language instructions into machine code instructions and it produced the .obj file (object

file) and .lst file (list file). It is also called as source file because some assembler requires

that this file must have "src" extension.

o Linker Program: The linker program is used for generating one or more object files and

produces an absolute object file with an extension "abs".

o OH Program: The OH program fetches the "abs" file and fed it to a program called "OH".

OH is called as object to hex converter it creates a file with an extension "hex" that is ready

for burn in to the ROM.

Labels in assembly Language

All labels used in assembly language follow the certain rules as given below:

o Each label name should be unique. The name used as label in assembly language

programming consist of alphabetic letters in both lowercase and uppercase, numbers from

0 to 9, and special characters such as at the rate (@), question mark (?), underscore(_), and

dollar ($) etc.

o Reserved words are not allowed to be used as a label in the program. For example, MOV

and ADD words are reserved words.

o The first character must be an alphabetical character, it cannot be a number.

Data Type

The 8051 microcontroller contains a single data type of 8-bits, and each register is also of 8-bits

size. The programmer has to break down data larger than 8-bits (00 to FFH, or to 255 in decimal)

so that it can be processed by the CPU.

DB (Define Byte)

The DB directive is the most widely used data directive in the assembler. It is used to define the

8-bit data. It can also be used to define decimal, binary, hex, or ASCII formats data. For decimal,

the "D" after the decimal number is optional, but it is required for "B" (binary) and "Hl"

(hexadecimal).

To indicate ASCII, simply place the characters in quotation marks ('like this'). The assembler

generates ASCII code for the numbers/characters automatically. The DB directive is the only

directive that can be used to define ASCII strings larger than two characters; therefore, it should

be used for all the ASCII data definitions. Some examples of DB are given below −

ORG 500H

DATA1: DB 28 ;DECIMAL (1C in hex)

DATA2: DB 00110101B ;BINARY (35 in hex)

DATA3: DB 39H ;HEX

ORG 510H

DATA4: DB "2591" ;ASCII NUMBERS

ORG 520H

DATA6: DA "MY NAME IS Michael" ;ASCII CHARACTERS

Either single or double quotes can be used around ASCII strings. DB is also used to allocate

memory in byte-sized chunks.

Assembler Directives

Some of the directives of 8051 are as follows −

 ORG (origin) − The origin directive is used to indicate the beginning of the address. It

takes the numbers in hexa or decimal format. If H is provided after the number, the number

is treated as hexa, otherwise decimal. The assembler converts the decimal number to hexa.

 EQU (equate) − It is used to define a constant without occupying a memory location. EQU

associates a constant value with a data label so that the label appears in the program, its

constant value will be substituted for the label. While executing the instruction "MOV R3,

#COUNT", the register R3 will be loaded with the value 25 (notice the # sign). The

advantage of using EQU is that the programmer can change it once and the assembler will

change all of its occurrences; the programmer does not have to search the entire program.

 END directive − It indicates the end of the source (asm) file. The END directive is the last

line of the program; anything after the END directive is ignored by the assembler.

Labels in assembly Language

All labels used in assembly language follow the certain rules as given below:

o Each label name should be unique. The name used as label in assembly language

programming consist of alphabetic letters in both lowercase and uppercase, numbers from

0 to 9, and special characters such as at the rate (@), question mark (?), underscore(_), and

dollar ($) etc.

o Reserved words are not allowed to be used as a label in the program. For example, MOV

and ADD words are reserved words.

o The first character must be an alphabetical character, it cannot be a number.

Embedded Systems - Tools & Peripherals

Compilers and Assemblers

Compiler

A compiler is a computer program (or a set of programs) that transforms the source code written

in a programming language (the source language) into another computer language (normally

binary format). The most common reason for conversion is to create an executable program. The

name "compiler" is primarily used for programs that translate the source code from a highlevel

programming language to a low-level language (e.g., assembly language or machine code).

Cross-Compiler

If the compiled program can run on a computer having different CPU or operating system than the

computer on which the compiler compiled the program, then that compiler is known as a cross-

compiler.

Decompiler

A program that can translate a program from a low-level language to a high-level language is

called a decompiler.

Language Converter

A program that translates programs written in different high-level languages is normally called a

language translator, source to source translator, or language converter.

A compiler is likely to perform the following operations −

 Preprocessing

 Parsing

 Semantic Analysis (Syntax-directed translation)

 Code generation

 Code optimization

Assemblers

An assembler is a program that takes basic computer instructions (called as assembly language)

and converts them into a pattern of bits that the computer's processor can use to perform its basic

operations. An assembler creates object code by translating assembly instruction mnemonics into

opcodes, resolving symbolic names to memory locations. Assembly language uses a mnemonic

to represent each low-level machine operation (opcode).

Debugging Tools in an Embedded System

Debugging is a methodical process to find and reduce the number of bugs in a computer program

or a piece of electronic hardware, so that it works as expected. Debugging is difficult when

subsystems are tightly coupled, because a small change in one subsystem can create bugs in

another. The debugging tools used in embedded systems differ greatly in terms of their

development time and debugging features. We will discuss here the following debugging tools −

 Simulators

 Microcontroller starter kits

 Emulator

Simulators

Code is tested for the MCU / system by simulating it on the host computer used for code
development. Simulators try to model the behavior of the complete microcontroller in
software.

Functions of Simulators

A simulator performs the following functions −

 Defines the processor or processing device family as well as its various versions for the

target system.

 Monitors the detailed information of a source code part with labels and symbolic

arguments as the execution goes on for each single step.

 Provides the status of RAM and simulated ports of the target system for each single step

execution.

 Monitors system response and determines throughput.

 Provides trace of the output of contents of program counter versus the processor registers.

 Provides the detailed meaning of the present command.

 Monitors the detailed information of the simulator commands as these are entered from

the keyboard or selected from the menu.

 Supports the conditions (up to 8 or 16 or 32 conditions) and unconditional breakpoints.

 Provides breakpoints and the trace which are together the important testing and debugging

tool.

 Facilitates synchronizing the internal peripherals and delays.

